
Riemann-Roch and dimension formulas for spaces of modular forms Sai Sivakumar

These notes follow Modular Forms by Toshitune Miyake and A First Course in Modular Forms by Fred Diamond

and Jerry Shurman.

1 Conventions and notations

The upper half plane of C is denoted H. By adding additional points and charts, obtain the Riemann surface

H∗ = H ∪ Q ∪ {∞}. These extra points contain the cusps of congruence subgroups of SL2(Z). In the analysis

below, we ignore cusps in order to streamline this note. For a congruence subgroup Γ of SL2(Z), the corresponding
compactified modular curve is the Riemann surface X(Γ) = Γ\H∗.

For γ =
(
a b
c d

)
∈ SL2(Z), the factor of automorphy is j(γ, z) = cz + d for z ∈ C.

A modular form of weight k with respect to a congruence subgroup Γ is a holomorphic function f on H for which

f(γ(z)) = j(γ, z)kf(z)

for any γ ∈ G and z ∈ H. Furthermore, we require that j(α, z)−kf(α(z)) is holomorphic at ∞ for any α ∈ SL2(Z)
(meaning the Fourier coefficients of this function are concentrated in indices greater than or equal to zero). This

last condition captures the condition that f be holomorphic at the cusps for Γ.

An automorphic form (of weight k) is a meromorphic function f on H which is meromorphic at the cusps of Γ and

transforms with respect to a congruence subgroup in the same way as in the definition of a modular form. That

is, for any γ ∈ Γ and z ∈ H we have f(γ(z)) = j(γ, z)kf(z).

Let z be a coordinate of U ⊆ C. The meromorphic differentials on U are meromorphic (global) sections of the

cotangent bundle Ω of U , and a meromorphic section of Ω is a (holomorphic) section ω = f(z)dz ∈ Ω(V ) for

some open set V ⊆ U where f(z) is meromorphic on U and U \ V contains the poles of f(z). In other words, the

meromorphic differentials on U are sections of the form f(z)dz where f(z) is meromorphic on U .

The meromorphic differentials of degree n on U are meromorphic (global) sections of the n-th tensor (or symmetric)

power of the cotangent bundle of U , Ω⊗n. Since Ω is a trivial line bundle, its tensor powers are also trivial, so

sections of Ω⊗n are of the form f(z)(dz)⊗n. Since the cotangent bundle is rank one, its tensor powers agree with

its symmetric powers, so we suppress the notation ⊗ from now on. Denote meromorphic differentials of degree n

on U by f(z)(dz)n for f(z) meromorphic on U and the space of meromorphic differentials of degree n on U by

Ωn(U). There is a natural way to multiply differentials (of possibly different degrees) together, so these spaces

assemble into a graded algebra of differentials Ω•(U).

If φ : U → V is a holomorphic map of open sets in C, then the pullback map φ∗ : Ωn(V ) → Ωn(U) is given by the

change of variables w = φ(z):

f(w)(dw)n 7→ f(φ(z))(φ′(z))n(dz)n,

where w is the coordinate for V and z is the coordinate for U .
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Let R be a compact Riemann surface. A meromorphic differential of degree k on R is given by an atlas {(Vα, Vα
φα−−→

Uα)} of R and a collection of meromorphic functions {ϕα} on R for which

ϕα(p)

(
dφα

dφβ
(p)

)k

= ϕβ(p)

for all p ∈ Vα ∩ Vβ. This condition is more accurately/less confusingly(?) presented as the following condition:

The functions ϕα in local coordinates determine the meromorphic differentials (ϕα ◦ φ−1
α )(z)(dz)k on Uα for each

α, and we require that the pullback of a differential (ϕβ ◦ φ−1
β )(z)(dz)k along the transition map Uα

φβφ
−1
α−−−−→ Uβ

agrees with (ϕα ◦ φ−1
α )(z)(dz)k on Uα ∩ Uβ; that is,

(φβφ
−1
α )∗((ϕβ ◦ φ−1

β )(z)(dz)k) = (ϕβ ◦ φ−1
β )(φβφ

−1
α (w))

(
dφβφ

−1
α (w)

dw

)k

(dw)k

= (ϕβ ◦ φ−1
α )(w)

(
dφβφ

−1
α (w)

dw

)k

(dw)k

agrees with

(ϕα ◦ φ−1
α )(w)(dw)k

on Uα ∩ Uβ (and the same can be said about pulling back along the transition function in the other direction).

There is a notion of equivalence of meromorphic differentials which we do not record here. Denote the space of

meromorphic differentials of degree n on R by Ωn(R) and note that these spaces also assemble into the graded

algebra Ω•(R).

The order of vanishing of a nonzero meromorphic differential ω = {ϕα} of degree k of R at the point p ∈ Vα,

denoted vp(ω) is given by the usual order of vanishing of ϕα at p, calculated in local coordinates by vφα(p)(ϕα◦φ−1
α ).

This value is independent of the local representative used for ω because the transition functions are holomorphic

and have no zeroes on the intersection of two charts. Therefore the definition of the divisor of ω given by

div(ω) =
∑
p

vp(ω)p ∈ Div(R) = ZR

makes sense for nonzero differentials. This definition of the divisor function is additive on products of differentials

as expected. The degree of a divisor a =
∑

p app is deg(a) =
∑

p ap ∈ Z.

A divisor D is nonnegative if all of its coefficients are nonnegative, and denote this by D ≥ 0. The Riemann-Roch

space of a divisor D is the vector space

L(D) = {f ∈ C(R)× | f = 0 or div(f) +D ≥ 0}

and its dimension is denoted l(D).

The Riemann-Roch theorem: Let g be the genus of R and choose any nonzero differential ω of degree 1 on R (we

call div(ω) a canonical divisor on R). Then for any divisor a,

l(a) = deg(a)− (g − 1) + l(div(ω)− a).
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Note that l(0) = 1 since only the constant functions in C(R) have divisor greater than or equal to zero (by

compactness of R, the only holomorphic functions on R are the constants). So with a = 0, deduce that for any

canonical divisor div(ω) on R that l(div(ω)) = g. With a = div(ω), deduce that deg(div(ω)) = 2(g − 1). If

l(a) > 0, then we can select a nonzero f ∈ L(a) from which we see that div(f) + a ≥ 0; taking the degree yields

deg(div(f)) + deg(a) ≥ 0, so deg(a) ≥ − deg(div(f)) = 0 (the degree of divisors of meromorphic functions on a

compact Riemann surface, called principal divisors, is always zero). By the contrapositive, if deg(a) < 0, then

l(a) = 0. This implies that if deg(a) > 2(g − 1); that is, for a canonical divisor div(ω) that deg(div(ω) − a) < 0,

then l(div(ω)− a) = 0.
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2 Meromorphic differentials and modular forms

Since most of H∗ is H, we will refer to meromorphic differentials {ϕα} of degree k on H∗ simply by the meromorphic

ϕ on H. Since the coordinate on H is given by z (the chart map is the identity), ϕ determines a meromorphic

differential ϕ(z)(dz)k on H ⊆ C. We will identify meromorphic differentials on H∗ with meromorphic differentials

on H in this way.

An automorphic form f(z) on H can be sent to the meromorphic differential f(z)(dz)n on H∗. This differential

form is Γ-invariant: for any γ =
(
a b
c d

)
∈ Γ we have

d(γ(z)) =
d

dz

(
az + b

cz + d

)
dz =

1

(cz + d)2
dz = j(γ, z)−2dz

(since det γ = 1). Thus f(γ(z))(d(γ(z)))k = j(γ, z)−2kf(z)j(γ, z)2k(dz)k = f(z)(dz)k. In other words, this gives a

map

{automorphic forms f(z) of weight 2k} (−)(dz)k−−−−−→ {Γ-invariant meromorphic differentials f(z)(dz)k on H∗}.

By reversing the calculation above, it follows that this map is an isomorphism of vector spaces.

A meromorphic differential on X(Γ) may be pulled back along the quotient map π : H∗ → X to obtain a

meromorphic differential on H∗. To understand this pullback explicitly, start with a known set of charts Vi

for X(Γ) and pull back each ϕi(z)(dz)
n on each one of those charts. We will not record the calculations for

the pullback maps using the usual charts for X(Γ), but the point is that because a meromorphic differential on

X(Γ) is specified by a collection of meromorphic differentials on open sets which glue together, these meromorphic

differentials will still glue together after being pulled back to meromorphic differentials on H∗.

Since π is the quotient given by identifying orbits of the action of Γ on H∗ to points, a meromorphic differential

f(z)(dz)n on H∗ obtained by pulling back a meromorphic differential on X(Γ) along the quotient map π is

Γ-invariant. So for any γ ∈ Γ, we can pull back f(z)(dz)n along the action of γ on H∗ to obtain equalities

f(z)(dz)n = γ∗(f(z)(dz)n) = f(γ(z))(γ′(z))n(dz)n = j(γ, z)−2nf(γ(z))(dz)n.

This shows that the function f(z) is an automorphic form with weight 2n. To see that f(z) is meromorphic at

cusps, it suffices to see that the meromorphic differential it comes from expanded locally around the cusps of X(Γ)

is given by a function which is meromorphic at zero, so f(z) should also be meromorphic at its cusps.

The above discussion establishes the following map

{meromorphic differentials on X(Γ)} π∗
−−→ {Γ-invariant meromorphic differentials f(z)(dz)k on H∗}

∼= {automorphic forms f(z) of weight 2k}.

That π∗ is an isomorphism is not difficult but is tedious to show (this amounts to Theorem 2.3.1 in Miyake, which

proves that the composite of the maps above is an isomorphism). The calculation one must do is to show that a
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weakly meromorphic function f(z) of weight 2k gives rise to a meromorphic differential on X(Γ) of degree k in a

way which is (left and right) inverse to the composite map above.

We will do part of the calculation. Let f(z) be an automorphic form of weight 2k on H∗. We will describe the

component of the meromorphic differential ω = {ϕα} of degree k it defines on X(Γ) around a point a = π(z0) ∈
X(Γ) for z0 ∈ H. That is, we will define a meromorphic function ϕa that ω looks like around a. There is a

neighborhood Uz0 of z0 in H such that γUz0 ∩Uz0 ̸= ∅ if and only if γ ∈ Γz0 , in which case γUz0 = Uz0 , and a chart

(Vα = π(Uz0), Va
φa−→ Ua) containing a. Consider the function

g(z) = f(z)

(
d(φa ◦ π)(z)

dz

)−k

defined on Uz0 . In principle we could define g(z) on all Γ-translates of Uz0 , but since π is the quotient map

H∗ → Γ\H∗, it is enough to look at Uz0 . We will show that g(z) descends to a meromorphic function on Va; that

is, there exists a function ϕa on Va such that (ϕa ◦ π)(z) = g(z) on Uz0 . This amounts to checking that g(z) is

Γz0-invariant (we don’t check that g(z) is Γ-invariant since the domain of g(z) is Uz0 and the automorphisms of

that set are Γz0). Indeed, for any γ ∈ Γz0 ⊂ Γ, π(γ(z)) = π(z) (as π sends z to Γz) so

g(γ(z)) = f(γz)

(
d(φa ◦ π)(γz)

dγz

)−k

= j(γ, z)2kf(z)

(
d(φa ◦ π)(z)

dz

)−k(d(γz)

dz

)−k

= j(γ, z)2kf(z)

(
d(φa ◦ π)(z)

dz

)−k

j(γ, z)−2k

= f(z)

(
d(φa ◦ π)(z)

dz

)−k

= g(z)

Thus g(z) descends to a meromorphic function ϕa on Va, which is what we sought to calculate.

In summary, the three vector spaces below are isomorphic:

1. the space of automorphic forms f(z) of weight 2k

2. the space of Γ-invariant meromorphic differentials f(z)(dz)k on H∗

3. the space of meromorphic differentials on X(Γ) of degree k.

The weight zero automorphic forms correspond to the degree 0 meromorphic differentials on X(Γ), in other

words, the meromorphic functions on X(Γ). Replacing meromorphic with holomorphic in the above list gives the

correspondence of modular forms of weight 2k with Γ-invariant holomorphic differentials f(z)(dz)k on H∗ and with

holomorphic differentials on X(Γ) of degree k. We will give a fourth characterization using divisors in the next

section.

5



Riemann-Roch and dimension formulas for spaces of modular forms Sai Sivakumar

3 Riemann-Roch and dimension formulas

Due to the possibility of elliptic points in X(Γ), meromorphic modular functions of positive weight 2k may have

orders of vanishing that are fractional and not just integers. We will make sense of this shortly. To start we will

define the Q-vector space of divisors DivQ(X(Γ)) = Div(X(Γ)) ⊗Z Q on X(Γ) and redefine the divisor function

div to map to DivQ(X(Γ)). Our goal is to carefully reduce calculations involving divisors with rational coefficients

to ones involving integer coefficients so that we can use the Riemann-Roch theorem. Henceforth we also suppress

the argument (z) of functions.

Let f be any nonzero automorphic form of weight 2k (that these exist for all k is a theorem). First we make some

observations. The quotient of two automorphic forms of the same weight is weight zero, so any automorphic form

of weight 2k may be obtained by multiplying f by a suitable automorphic form of weight zero. The weight zero

automorphic forms on H may be identified with C(X(Γ)), the meromorphic functions on X(Γ).

Let f be any nonzero automorphic form of weight 2. Let ω be the corresponding degree 1 differential on X(Γ);

observe that div(ω) is a canonical divisor on X(Γ). Then ωk is a degree k differential on X(Γ) so

deg(div(ωk)) = deg(kdiv(ω)) = 2k(g − 1).

On the other hand, since the space of automorphic forms of weight 2k is equal to fk (which has weight 2k) times

the space of automorphic forms of weight zero, it follows by passing to differentials on X(Γ) that Ωk(X(Γ)) =

C(X(Γ))ωk. So for any nonzero ω̃ ∈ Ωk(X(Γ)),

deg(div(ω̃)) = deg(div(ω0ω
k)) = 2k(g − 1)

for some ω0 ∈ C(X(Γ)) (again since principal divisors on compact Riemann surfaces have degree zero). Therefore

every nonzero differential in Ωk(X(Γ)) has divisor with degree 2k(g − 1).

Let f be a nonzero automorphic form of weight 2k. A modular form is an automorphic form on H∗ which is

holomorphic on H and at the cusps of Γ. So the space of modular forms of weight 2k may be identified with the

space

{gf | g is an automorphic form of weight zero}.

Automorphic forms of weight zero pass to meromorphic functions on X(Γ), so we may identify these collections

of functions together. Automorphic forms of positive weight 2k do not pass to meromorphic functions on X(Γ)

due to how they transform with respect to Γ, they instead pass to meromorphic differentials of degree k as we saw

before. What we would like to do is to nevertheless pass to X(Γ) and make the following claim: “The space of

modular forms of weight 2k may be identified with the space

{g ∈ C(X(Γ)) | g = 0 or div(g) + div(f) ≥ 0}.”

This sentence does not make sense since div(f) is not defined. We will extend the definition of div : Ω•(X(Γ)) →
Div(X(Γ)) to a function whose codomain is DivQ(X(Γ)).
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Again consider a = π(z0) ∈ X(Γ) for z0 ∈ H and a neighborhood Uz0 of z0 in H such that γUz0 ∩ Uz0 ̸= ∅ if

and only if γ ∈ Γz0 , in which case γUz0 = Uz0 , and a chart (Vα = π(Uz0), Va
φa−→ Ua) containing a. There exists

ρ ∈ SL2(Z) so that ρH is the open unit disk in C and ρz0 = 0; that is, ρ is the Cayley transform ρz = z−z0
z+z0

. We

can choose the chart around a so that (φa ◦ π)(z) = (ρz)e for z ∈ Uz0 , where e is the order of Γz0 in PSL2(Z)
(this is called the ramification index at a). Let ω = {ϕα} be the differential that f is sent to, and ϕa the local

expression of ω around a on Va. Thus

(ϕa ◦ π)(z) = g(z) = f(z)

(
d(φa ◦ π)(z)

dz

)−k

= f(z)

(
d(ρz)e

dz

)−k

= f(z)

(
d(ρz)

dz

)−k

(e(ρz)e−1)−k.

Set w = ρz so that

(ϕa ◦ π ◦ ρ−1)(w) = e−kf(ρ−1w)

(
dρ−1w

dw

)k

w−k(e−1).

Since (φa ◦ π ◦ ρ−1)(w) = we = φa(p) for p = π(z), the order of vanishing at w of the left hand side is

vw(ϕa ◦ π ◦ ρ−1) = vw((ϕa ◦ φ−1
a ) ◦ (φa ◦ π ◦ ρ−1)) = evφa(p)(ϕa ◦ φ−1

a ) = evp(ϕa).

The order of vanishing at w = ρz of the right hand side is

vρz

(
(f ◦ ρ−1)(−)

(
dρ−1(−)

d(−)

)k)
− k(e− 1) = vz(f)− k(e− 1)

since dρ−1w
dw (equivalently dρz

dz ) has neither zeroes nor poles around ρz0 (z0). We calculate vz(f) by expanding f in

a Laurent series around z0 and calculate the order of vanishing at z (the smallest index with nonzero coefficient

in the series expansion). Assembling the above calculations and remembering ω = {ϕα} yields

vp(ω) =
1

e
vz(f)− k

(
1− 1

e

)
so that we should define

vp(f) :=
1

e
vz(f)

where p = π(z). The above formula even works when f has weight zero. This would allow us to define div(f) as

the formal sum
∑

p vp(f) as desired. This extended definition of div does all the right things a function called div

ought to do. In particular, we have

div(ω) = div(f)− k
∑
p

period 2

1

2
p− k

∑
p

period 3

2

3
p− k

∑
p

cusp of Γ

p.

We now return to the calculation for the dimensions of spaces of modular forms. Fix a nonzero automorphic form

f of weight 2k. The space of modular forms of weight 2k may be identified with the space

{g automorphic form of weight zero | g = 0 or div(gf) ≥ 0}
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which we identify with

{g ∈ C(X(Γ)) | g = 0 or div(g) + div(f) ≥ 0}

since f is nonzero. Since g is meromorphic on X(Γ), div(g) is integral, so the condition div(g) + div(f) ≥ 0 is

equivalent to the condition div(g) + ⌊div(f)⌋ ≥ 0 (where the floor function on divisors means to apply it to the

coefficients). It follows thatM2k(Γ) is isomorphic to L(⌊div(f)⌋) = {g ∈ C(X(Γ)) | g = 0 or div(g)+⌊div(f)⌋ ≥ 0},
so their dimensions are the same; that is, dim(M2k(Γ)) = l(⌊div(f)⌋).

From

div(ω) = div(f)− k
∑
p

period 2

1

2
p− k

∑
p

period 3

2

3
p− k

∑
p

cusp of Γ

p

we obtain the equation

deg(⌊div(f)⌋) = deg(div(ω)) + ⌊(k/2)⌋ε2 + ⌊(2k/3)⌋ε3 + kε∞,

where ε2, ε3, ε∞ are the number of period 2, 3 elliptic points and cusps respectively. Note further that since div(ω)

is a k power of a canonical divisor, its degree is 2k(g − 1) with g the genus of X(Γ). Analysis of the right hand

side of the above equation yields deg(⌊div(f)⌋) > 2g − 2 when k ≥ 1.

The Riemann-Roch theorem simplifies to the following expression since the degree of deg(⌊div(f)⌋) is greater than
2g − 2:

l(⌊div(f)⌋) = (2k − 1)(g − 1) + ⌊(k/2)⌋ε2 + ⌊(2k/3)⌋ε3 + kε∞;

this expression is hence equal to the dimension of M2k(Γ).

To calculate the dimensions of spaces of cusp forms S2k(Γ), observe that since cusp forms vanish at cusps, then

S2k(Γ) ∼= {g ∈ C(X(Γ)) | div(g)+⌊div(f)−
∑

cusps p⌋ ≥ 0} for a nonzero automorphic form f of weight 2k. That is,

S2k(Γ) ∼= L(⌊div(f)−
∑

cusps p⌋). Repeat similar estimates as above (and here we need k ≥ 2 instead of k ≥ 1 to use

the version of Riemann-Roch as above) to find that for k ≥ 2, dim(S2k(Γ)) = l(⌊div(f)⌋)−ε∞ = dim(M2k(Γ))−ε∞.

For k = 1, the divisor ⌊div(f)−
∑

cusps p⌋ is a canonical divisor, so its linear space (which is isomorphic to S2(Γ))

has dimension g.

We handle calculating the dimensions of the remaining spaces M0(Γ), S0(Γ) of modular forms by hand. Observe

that modular forms of weight zero correspond to holomorphic functions X(N) → Ĉ; since X(N) and Ĉ are

compact, such maps are either surjective or constant. Since these maps have no poles they could not be surjective,

so they are constants; that is, M0(Γ) ∼= C is the space of constant functions. This implies that S0(Γ) = 0.

There exists a nonzero cusp form ∆ for the congruence subgroup SL2(Z), from which it follows ∆ is a cusp form

for any congruence subgroup Γ. If there were modular forms f of weight 2k for negative k, then f6∆ is a weight

zero cusp form; in other words, the zero function. So f had to be zero. Hence there are no modular forms of

negative even weight.
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We obtain the following theorem. Let k be an integer and let Γ be a congruence subgroup. Let g be the genus of

X(Γ), let ε2, ε3 be the number of elliptic points with period 2, 3 respectively, and let ε∞ be the number of cusps.

Then

dimM2k(Γ) =


(2k − 1)(g − 1) + ⌊k2⌋ε2 + ⌊2k3 ⌋ε3 + kε∞ if k ≥ 1,

1 if k = 0,

0 if k < 0,

and

dimS2k(Γ) =


(2k − 1)(g − 1) + ⌊k2⌋ε2 + ⌊2k3 ⌋ε3 + (k − 1)ε∞ if k ≥ 2,

g if k = 1,

0 if k ≤ 0.
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