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These notes closely follow An Introduction to Homological Algebra by Weibel.

In Abelian categories with enough injectives, there is a procedure for calculating right derived functors out of
them by taking injective resolutions of objects, applying the left exact functor which is being derived, and taking
cohomology. Let G: A — B and F': B — C be left exact functors of Abelian categories. We outline a procedure
for calculating R‘(F'G) under mild conditions on the categories A and B and the functors F and G.

Theorem 0.1 (Grothendieck spectral sequence). Let A, B, and C be Abelian categories such that A and B have
enough injectives. Let G: A — B and F: B — C be left exact functors.
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In addition, if G sends injective objects of A to F-acyclic objects of B (i.e. to elements B € B for which R'F(B) = 0

fori>0), then for each A € A there exists a convergent first quadrant cohomological spectral sequence
EP = (RPF)(R'G)(A) converging to  RPTI(FG)(A).
There are natural edge maps
(RPF)(GA) — RP(FG)(A) and RYFG)(A) — F(RIG(A))
and an exact sequence of low degree terms

0 — (R'F)(GA) — RY(FG)(A) — F(R'G(A)) — (R*F)(GA) — R*(FG)(A).

The main idea of the proof of Theorem [0.1] relies extensively on spectral sequences arising from two particular

filtrations associated to double complexes and Cartan-Eilenberg resolutions of cochain complexes.

Given a double complex C' = C** filter the (product or direct sum) total complex Tot(C') by the columns of C;
that is, let TF* Tot(C) be given by
("F¥ Tot(C))n = P C™.

p+q=n
p>k

Filter the total complex Tot(C) by the rows of C so that /F* Tot(C) is given by

("F*Tot(C))n = € C™.

p+q=n
q=k

Filtering by columns yields a spectral sequence {{EF?} with ‘Ef? = (IFP Tot(C))piq/(IFPTL Tot(C))ptq = CPI.

The maps dy are the vertical differentials d” of C, so IEY? = HJ(CP*) with differentials d; given by di?: H{(CP*) —
Hi(C®+V*) induced by the horizontal differentials dj, on C. Then ‘E}? = HYH{(C).
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Filtering by rows yields a spectral sequence {{/EF?} with 1IEF? = (HLFP Tot(C))ptq/ (HEPHL Tot(C))ptqg = CP.
The maps dy are the horizontal differentials d” of C' (but are vertical in this sheet), so the maps d; are induced
by the vertical differentials of C. Then /E}? = HEH}(C).

If C is a first quadrant double complex, the filtrations 'F* Tot(C) and T/F* Tot(C) are canonically bounded (in
this setting, this means *//F? Tot(C) = Tot(C) and (H/F"*+! Tot(C)),, = Tot(C), for each n), so

'EP = HYHI(C) and ER? = HPHJ(C) converge to HP'9(Tot(C)).

This procedure is nice because it allows us to calculate homology in two different ways. We will use this technology
on a Cartan-Eilenberg resolution of a particular cochain complex (yielding a double complex), to obtain the
Grothendieck spectral sequence in Theorem

Let A be an Abelian category with enough injectives. A (right) Cartan-Eilenberg resolution of a cochain complex
A* in A is an upper half-plane complex I = I'** of injective objects of A and a chain map A* < I*Y (called the

augmentation map) such that

1. the columns IP* are injective resolutions of AP,

2. the induced maps on coboundaries and cohomology

ZP(e): ZP(A) — ZP(I,dy,),
BP(e): BP(A) — BP(I,dy),
HP(e): HP(A) — HP(I,dy)

form injective resolutions, where BP(I,dy) is the cochain complex given by (BP(I,dp))? = im(dﬁlp _1)q). The
cochain complexes ZP(I,dy) and HP(I,dy) = ZP(1,dy)/BP(I,dy) are defined similarly.

Every cochain complex A = A* in A has a Cartan-Eilenberg resolution A — I. Let F': A — B be a left exact
functor. We may define the (right) hyper-derived functor R‘F by R*F(A) = H* Tot'!(F(I)) whenever Tot'!(F(I))
exists in B. In the previous discussion on spectral sequences associated to filtrations of cochain complexes, let

AP =0 for p < 0 and take C to be F/(I) to see that there are two spectral sequences converging to R'F(A).

Proof of Theorem[0.1. Let A € A and choose an injective resolution A — I of A in A. Apply G to obtain a
cochain complex G(I) in B. Then consider a Cartan-Eilenberg resolution J of G(I). Since G(I) has no terms in
degrees less than 0, J, and hence also F(.J), is a first quadrant double complex so that TotI(F(.J)) exists in C.

Thus we may consider R*F(G(I)) = H’ Tot'(F(.J)), and observe that there are two spectral sequences converging
to REF(G(I)).

The first spectral sequence converging to RPTIF(G(I)) is given by E2? = HYHI(F(J)) = HY(RIF|G(I)]). But
G takes injective objects of A to F-acyclic objects of B, so RIF[G(I?)] = 0 for ¢ > 0. Then this spectral
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sequence collapses, leaving only the terms on the horizontal axis IEgo = H}(FG(I)) = RP(FG)(A), which are the
cohomology groups HP? Tot'!(F(J)) = RPF(G(I)).

On the other hand, the other spectral sequence converging to RPT9F(G(I)) is given by

©

"By = HYH)(F(J)) = HE(F(H}J)) = (R'F)(HY(GI)) = (RPF)(R'G)(A)

The equality (©) involving commuting F' with taking cohomology requires some elaboration. Since J = J** is a

double complex, we obtain the short exact sequences
0 — Z9(J,dp)* = J¥* — B (J,dp)* -0 and 0— BI(J,dy)* — Z9(J,dp)* — H(J,dp)* — 0.

Since Z9(J,dy)* and B?(J,dp)* are injective, the above short exact sequences split so that J9* = Z9(J,dp)* @
BItY(J,dp)* and Z9(J,dp)* = BI(J,dy)* ® H(J,dy)*. Since F is an additive functor, applying F to the
above short exact sequences preserves exactness. Thus H(F(J)) = FZ(J,dy)*/FBI(J,dy)* = (FBI(J,dp)* &
FHI(J,dp)*)/FBY(J,dyp)* = FH1(J,dy)" as needed.

Thus for any A € A, the spectral sequence E5? = (RPF)(RIG)(A) converges to RFTIF(G(I)) = RPYI(FG)(A).
The edge maps are indeed the natural maps (RPF)(GA) = Ego — BB c HPTot"(F(J)) = RP(FG)(A) and
RYFG)(A) = HI Tot'"(F(J)) = EX c ES = F(RIG(A)).

A first quadrant spectral sequence { EX?}, > calculating the cohomology of a total complex T has EJ° = E19| since
the differentials mapping to E!° have zero modules as domain and differentials with E!° as domain map to zero
modules for 7 > 2. Then one edge map gives the first inclusion Ei° ¢ HY(T). Since FTHY(T) = E!Y = E19 the
map HY(T) — HY(T)/F'HY(T) = E% ¢ E{! has kernel F'H(T) =2 EI°. The differentials mapping to E°' have
zero modules as domain but only the differential d3' maps to F3°, so the image of H(T) — HY(T)/F'HY(T) =
E% c B is kerdiV. Since EZ = E2°/im d}" is a quotient of E2°, the kernel of the edge map E3° — H?(T) is

im di°. Combining everything together, we obtain the exact sequence
0— B - HYT) - E* 2 £ 5 H2(T).

Specializing this exact sequence to the Grothendieck spectral sequence yields the exact sequence of low degree
terms 0 — (R'F)(GA) — RY(FG)(A) — F(R'G(A)) — (R?*F)(GA) — R*(FG)(A). O

An application of the Grothendieck spectral sequence in geometry is in sheaf cohomology. Let f: X — Y be a
continuous map of topological spaces. Consider the pushforward functor f, on sheaves on X, which is right adjoint
to the pullback functor f~! on sheaves on Y. Then f, is left exact. Because f~! is exact, f. preserves injectives.
The category of sheaves on a topological space has enough injectives, so we are lead to consider composing f.
with the global sections functor I' on sheaves on Y and applying the Grothendieck spectral sequence. The derived
functors R'T' form sheaf cohomology, which is usually written as H*(Y,—). For a sheaf F on X, observe that
L(foF) = (£ F)(Y) = F(f1Y) = F(X) = I'(F), which we suggestively summarize as I'f, = I, where the second
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I" refers to taking global sections of sheaves on X. Therefore for any sheaf 7 on X, the Grothendieck spectral
sequence is E5Y = HP(Y, R1f,F), which converges to HPT9(X, F).

Pushing forward to a point is the same as taking global sections: The constant map g: Y — {x} has pushforward
g« satisfying (¢.G)({*}) = G(¢7'{*}) = G(Y) = I'(G). So in general we might consider the composition of
two continuous maps f: X — Y and g: Y — Z and the spectral sequence EX? = RPg,(Rf.F) converging
to RPT4(g, fo)F = (RPT4(gf).)F for any sheaf F on X. These spectral sequences find much use in algebraic

geometry.



