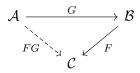
These notes closely follow An Introduction to Homological Algebra by Weibel.

In Abelian categories with enough injectives, there is a procedure for calculating right derived functors out of them by taking injective resolutions of objects, applying the left exact functor which is being derived, and taking cohomology. Let $G: \mathcal{A} \to \mathcal{B}$ and $F: \mathcal{B} \to \mathcal{C}$ be left exact functors of Abelian categories. We outline a procedure for calculating $R^i(FG)$ under mild conditions on the categories \mathcal{A} and \mathcal{B} and the functors F and G.

Theorem 0.1 (Grothendieck spectral sequence). Let \mathcal{A} , \mathcal{B} , and \mathcal{C} be Abelian categories such that \mathcal{A} and \mathcal{B} have enough injectives. Let $G: \mathcal{A} \to \mathcal{B}$ and $F: \mathcal{B} \to \mathcal{C}$ be left exact functors.



In addition, if G sends injective objects of A to F-acyclic objects of B (i.e. to elements $B \in \mathcal{B}$ for which $R^i F(B) = 0$ for i > 0), then for each $A \in \mathcal{A}$ there exists a convergent first quadrant cohomological spectral sequence

 $E_2^{pq} = (R^p F)(R^q G)(A) \quad converging \ to \quad R^{p+q}(FG)(A).$

There are natural edge maps

$$(R^{p}F)(GA) \rightarrow R^{p}(FG)(A)$$
 and $R^{q}(FG)(A) \rightarrow F(R^{q}G(A))$

and an exact sequence of low degree terms

$$0 \to (R^1F)(GA) \to R^1(FG)(A) \to F(R^1G(A)) \to (R^2F)(GA) \to R^2(FG)(A)$$

The main idea of the proof of Theorem 0.1 relies extensively on spectral sequences arising from two particular filtrations associated to double complexes and Cartan-Eilenberg resolutions of cochain complexes.

Given a double complex $C = C^{**}$, filter the (product or direct sum) total complex Tot(C) by the columns of C; that is, let ${}^{I}F^{k}Tot(C)$ be given by

$$({}^{I}\!F^{k}\operatorname{Tot}(C))_{n} = \bigoplus_{\substack{p+q=n\\p\geq k}} C^{pq}.$$

Filter the total complex Tot(C) by the rows of C so that ${}^{II}F^k Tot(C)$ is given by

$$({}^{II}F^k\operatorname{Tot}(C))_n = \bigoplus_{\substack{p+q=n\\q \ge k}} C^{pq}.$$

Filtering by columns yields a spectral sequence $\{{}^{I}E_{r}^{pq}\}$ with ${}^{I}E_{0}^{pq} = ({}^{I}F^{p}\operatorname{Tot}(C))_{p+q}/({}^{I}F^{p+1}\operatorname{Tot}(C))_{p+q} = C^{pq}$. The maps d_{0} are the vertical differentials d^{v} of C, so ${}^{I}E_{1}^{pq} = H_{v}^{q}(C^{p*})$ with differentials d_{1} given by $d_{1}^{pq} \colon H_{v}^{q}(C^{p*}) \to H_{v}^{q}(C^{(p+1)*})$, induced by the horizontal differentials d_{h} on C. Then ${}^{I}E_{2}^{pq} = H_{h}^{p}H_{v}^{q}(C)$. Filtering by rows yields a spectral sequence $\{{}^{II}E_r^{pq}\}$ with ${}^{II}E_0^{pq} = ({}^{II}F^p \operatorname{Tot}(C))_{p+q}/({}^{II}F^{p+1} \operatorname{Tot}(C))_{p+q} = C^{qp}$. The maps d_0 are the horizontal differentials d^h of C (but are vertical in this sheet), so the maps d_1 are induced by the vertical differentials of C. Then ${}^{II}E_2^{pq} = H_v^p H_h^q(C)$.

If C is a first quadrant double complex, the filtrations ${}^{I}F^{k}\operatorname{Tot}(C)$ and ${}^{II}F^{k}\operatorname{Tot}(C)$ are canonically bounded (in this setting, this means ${}^{I,II}F^{0}\operatorname{Tot}(C) = \operatorname{Tot}(C)$ and $({}^{I,II}F^{n+1}\operatorname{Tot}(C))_{n} = \operatorname{Tot}(C)_{n}$ for each n), so

$${}^{I}\!E_2^{pq} = H^p_h H^q_v(C) \quad \text{and} \quad {}^{II}\!E_2^{pq} = H^p_v H^q_h(C) \quad \text{converge to} \quad H^{p+q}(\operatorname{Tot}(C)).$$

This procedure is nice because it allows us to calculate homology in two different ways. We will use this technology on a Cartan-Eilenberg resolution of a particular cochain complex (yielding a double complex), to obtain the Grothendieck spectral sequence in Theorem 0.1.

Let \mathcal{A} be an Abelian category with enough injectives. A (right) Cartan-Eilenberg resolution of a cochain complex A^* in \mathcal{A} is an upper half-plane complex $I = I^{**}$ of injective objects of \mathcal{A} and a chain map $A^* \xrightarrow{\epsilon} I^{*0}$ (called the augmentation map) such that

- 1. the columns I^{p*} are injective resolutions of A^p ,
- 2. the induced maps on coboundaries and cohomology

$$Z^{p}(\epsilon) \colon Z^{p}(A) \to Z^{p}(I, d_{h}),$$
$$B^{p}(\epsilon) \colon B^{p}(A) \to B^{p}(I, d_{h}),$$
$$H^{p}(\epsilon) \colon H^{p}(A) \to H^{p}(I, d_{h})$$

form injective resolutions, where $B^p(I, d_h)$ is the cochain complex given by $(B^p(I, d_h))^q = \operatorname{im}(d_h^{(p-1)q})$. The cochain complexes $Z^p(I, d_h)$ and $H^p(I, d_h) = Z^p(I, d_h)/B^p(I, d_h)$ are defined similarly.

Every cochain complex $A = A^*$ in \mathcal{A} has a Cartan-Eilenberg resolution $A \to I$. Let $F : \mathcal{A} \to \mathcal{B}$ be a left exact functor. We may define the (right) hyper-derived functor $\mathbb{R}^i F$ by $\mathbb{R}^i F(A) = H^i \operatorname{Tot}^{\Pi}(F(I))$ whenever $\operatorname{Tot}^{\Pi}(F(I))$ exists in \mathcal{B} . In the previous discussion on spectral sequences associated to filtrations of cochain complexes, let $A^p = 0$ for p < 0 and take C to be F(I) to see that there are two spectral sequences converging to $\mathbb{R}^i F(A)$.

Proof of Theorem 0.1. Let $A \in \mathcal{A}$ and choose an injective resolution $A \to I$ of A in \mathcal{A} . Apply G to obtain a cochain complex G(I) in \mathcal{B} . Then consider a Cartan-Eilenberg resolution J of G(I). Since G(I) has no terms in degrees less than 0, J, and hence also F(J), is a first quadrant double complex so that $\operatorname{Tot}^{\Pi}(F(J))$ exists in \mathcal{C} . Thus we may consider $\mathbb{R}^i F(G(I)) = H^i \operatorname{Tot}^{\Pi}(F(J))$, and observe that there are two spectral sequences converging to $\mathbb{R}^i F(G(I))$.

The first spectral sequence converging to $\mathbb{R}^{p+q}F(G(I))$ is given by ${}^{I}E_{2}^{pq} = H_{h}^{p}H_{v}^{q}(F(J)) = H_{h}^{p}(R^{q}F[G(I)])$. But *G* takes injective objects of \mathcal{A} to *F*-acyclic objects of \mathcal{B} , so $R^{q}F[G(I^{p})] = 0$ for q > 0. Then this spectral sequence collapses, leaving only the terms on the horizontal axis ${}^{I}E_{2}^{p0} = H_{h}^{p}(FG(I)) = R^{p}(FG)(A)$, which are the cohomology groups H^{p} Tot^{II} $(F(J)) = \mathbb{R}^{p}F(G(I))$.

On the other hand, the other spectral sequence converging to $\mathbb{R}^{p+q}F(G(I))$ is given by

$${}^{II}\!E_2^{pq} = H^p_v H^q_h(F(J)) \stackrel{(\textcircled{o})}{=} H^p_v(F(H^q_h J)) = (R^p F)(H^q(GI)) = (R^p F)(R^q G)(A)$$

The equality (\bigcirc) involving commuting F with taking cohomology requires some elaboration. Since $J = J^{**}$ is a double complex, we obtain the short exact sequences

$$0 \to Z^q(J, d_h)^* \to J^{q*} \to B^{q+1}(J, d_h)^* \to 0 \quad \text{and} \quad 0 \to B^q(J, d_h)^* \to Z^q(J, d_h)^* \to H^q(J, d_h)^* \to 0.$$

Since $Z^q(J, d_h)^*$ and $B^q(J, d_h)^*$ are injective, the above short exact sequences split so that $J^{q*} = Z^q(J, d_h)^* \oplus B^{q+1}(J, d_h)^*$ and $Z^q(J, d_h)^* = B^q(J, d_h)^* \oplus H^q(J, d_h)^*$. Since F is an additive functor, applying F to the above short exact sequences preserves exactness. Thus $H^q_h(F(J)) = FZ^q(J, d_h)^*/FB^q(J, d_h)^* = (FB^q(J, d_h)^* \oplus FH^q(J, d_h)^*)/FB^q(J, d_h)^* = FH^q(J, d_h)^*$ as needed.

Thus for any $A \in \mathcal{A}$, the spectral sequence $E_2^{pq} = (R^p F)(R^q G)(A)$ converges to $\mathbb{R}^{p+q}F(G(I)) = R^{p+q}(FG)(A)$. The edge maps are indeed the natural maps $(R^p F)(GA) = E_2^{p0} \to E_\infty^{p0} \subset H^p \operatorname{Tot}^{\Pi}(F(J)) = R^p(FG)(A)$ and $R^q(FG)(A) = H^q \operatorname{Tot}^{\Pi}(F(J)) \to E_\infty^{0q} \subset E_2^{0q} = F(R^q G(A)).$

A first quadrant spectral sequence $\{E_r^{pq}\}_{r\geq 2}$ calculating the cohomology of a total complex T has $E_2^{10} = E_{\infty}^{10}$, since the differentials mapping to E_r^{10} have zero modules as domain and differentials with E_r^{10} as domain map to zero modules for $r \geq 2$. Then one edge map gives the first inclusion $E_2^{10} \subset H^1(T)$. Since $F^1H^1(T) \cong E_{\infty}^{10} = E_2^{10}$, the map $H^1(T) \to H^1(T)/F^1H^1(T) \cong E_{\infty}^{01} \subset E_2^{01}$ has kernel $F^1H^1(T) \cong E_2^{10}$. The differentials mapping to E_r^{01} have zero modules as domain but only the differential d_2^{01} maps to E_2^{20} , so the image of $H^1(T) \to H^1(T)/F^1H^1(T) \cong$ $E_{\infty}^{01} \subset E_2^{01}$ is ker d_2^{10} . Since $E_{\infty}^{20} = E_2^{20}/\operatorname{im} d_2^{10}$ is a quotient of E_2^{20} , the kernel of the edge map $E_2^{20} \to H^2(T)$ is im d_2^{10} . Combining everything together, we obtain the exact sequence

$$0 \to E_2^{10} \to H^1(T) \to E_2^{01} \xrightarrow{d_2} E_2^{20} \to H^2(T).$$

Specializing this exact sequence to the Grothendieck spectral sequence yields the exact sequence of low degree terms $0 \to (R^1F)(GA) \to R^1(FG)(A) \to F(R^1G(A)) \to (R^2F)(GA) \to R^2(FG)(A)$.

An application of the Grothendieck spectral sequence in geometry is in sheaf cohomology. Let $f: X \to Y$ be a continuous map of topological spaces. Consider the pushforward functor f_* on sheaves on X, which is right adjoint to the pullback functor f^{-1} on sheaves on Y. Then f_* is left exact. Because f^{-1} is exact, f_* preserves injectives. The category of sheaves on a topological space has enough injectives, so we are lead to consider composing f_* with the global sections functor Γ on sheaves on Y and applying the Grothendieck spectral sequence. The derived functors $R^i\Gamma$ form sheaf cohomology, which is usually written as $H^i(Y, -)$. For a sheaf \mathcal{F} on X, observe that $\Gamma(f_*\mathcal{F}) = (f_*\mathcal{F})(Y) = \mathcal{F}(f^{-1}Y) = \mathcal{F}(X) = \Gamma(\mathcal{F})$, which we suggestively summarize as $\Gamma f_* = \Gamma$, where the second Γ refers to taking global sections of sheaves on X. Therefore for any sheaf \mathcal{F} on X, the Grothendieck spectral sequence is $E_2^{pq} = H^p(Y, R^q f_* \mathcal{F})$, which converges to $H^{p+q}(X, \mathcal{F})$.

Pushing forward to a point is the same as taking global sections: The constant map $g: Y \to \{*\}$ has pushforward g_* satisfying $(g_*\mathcal{G})(\{*\}) = \mathcal{G}(g^{-1}\{*\}) = G(Y) = \Gamma(\mathcal{G})$. So in general we might consider the composition of two continuous maps $f: X \to Y$ and $g: Y \to Z$ and the spectral sequence $E_2^{pq} = R^p g_*(R^q f_*\mathcal{F})$ converging to $R^{p+q}(g_*f_*)\mathcal{F} = (R^{p+q}(gf)_*)\mathcal{F}$ for any sheaf \mathcal{F} on X. These spectral sequences find much use in algebraic geometry.