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Abstract

Classical modular forms are analytic functions of the upper half plane invariant under the action of congruence
subgroups of SLa(Z), up to a factor of automorphy. In this setting, the Hecke operators on the space
of modular forms are normal operators on the subspace of cusp forms, the modular forms that vanish
at cusps. Cusp forms satisfy the strong multiplicity one property, which roughly says that normalized
eigenfunctions of the Hecke operators are uniquely determined by their eigenvalues. Strong multiplicity
one, and other multiplicity one results, are often presented in the language of automorphic forms and
representation theory. We introduce the theory of classical modular forms and provide a self-contained proof
of the strong multiplicity one property for classical modular forms, following the proof in Modular Forms
by Toshitsune Miyake. This approach avoids using the language of automorphic forms and representation
theory by studying L-functions associated to modular forms, and their Euler products. An application of
the strong multiplicity one property yields a basis for the space of cusp forms, which is nice since the space
of modular forms decomposes into the direct sum of the space of cusp forms and the space of Eisenstein
series.
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Introduction

Modular forms are functions defined on the complex upper half plane that satisfy certain holomorphy con-
ditions, and are invariant under a certain action of so-called congruence subgroups of SLy(Z), up to some
factor. A modular form f admits a Fourier series expansion

oo
f(Z) = Z an627”nza
n=0

where z is in the upper half plane and the a,, are complex numbers. Often, the symbol g is used in place of
e*™% | so that the Fourier series expansion becomes the g-series expansion f(z) = >~ anq". Each modular
form has an associated integer weight k and an integer level N which characterizes how it transforms under
the action of a particular congruence subgroup. There are interesting connections between the theory of
modular forms and other areas of mathematics, as we will see in the following examples.

A famous example of a modular form is the weight 12, level 1 modular discriminant function A given by

Alg)=q [ -gm*, q=e""

n=1

(See LMFDB newtform orbit 1.12.a.al) The Ramanugjan tau function T denotes the Fourier coefficients of A;
that is, A(z) =)~ 7(n)g™. The tau function satisfies several curious congruence relations, such as:

7(n) = o11(n) (mod 2'*) for n =1 (mod 8)
7(n) = 1217041 (n) (mod 2'3)  for n = 3 (mod 8)
7(n) = 1537041 (n) (mod 2'?) for n =5 (mod 8),
where oy, is the divisor function given by o (n) = 3 dln dF. In past decades, it was shown that the Fourier

coefficients of other modular forms also satisfy similar kinds of congruences. As a result, the theory of
congruences of modular forms has garnered significant interest in contemporary number theory.

Another interesting property of the tau function that Ramanujan observed in the early 1900s was that it
was a multiplicative function: 7(mn) = 7(m)7(n) for coprime integers m,n. Mordell gave a proof of this
property in 1917, and in the late 1930s, Hecke provided a general theory involving Hecke operators that
generalized Mordell’s approach to spaces of modular forms and obtained similar results for modular forms.

For another example of a modular form, consider the weight 2, level 11 modular form f given by

f@)=a ][ -g"-q"")? q=e"
n=1

(See LMFDB newform orbit 11.2.a.al) Formally expand this infinite product into the g-series >~ ; a,¢".
The first few terms of this sum are ¢ — 2¢% — ¢ + 2¢* + ¢° + 2¢% — 2¢" — 2¢° + - - -. Some interesting facts
are that the coefficients a, for primes p # 11 satisfy a, = p+ 1 (mod 5), and that the coefficients a,, are
multiplicative.

Now consider the elliptic curve defined by the equation y? + y = 23 — . For each p, let b, be p minus the
number of solutions in (Z/pZ)? to the equation y*> +y = x3 — x. The first few values of b, for the primes
2,3,5,7 are —2,—1,1,—2. But if we compare these values to a, for the same primes 2,3,5,7, we find that
ap = b,. Somewhat miraculously, it is true this equality holds for all primes p except for p = 11.

The connection between modular forms and elliptic curves is quite profound. The book [DS05| focuses on
a result called the Modularity theorem, which states that all rational elliptic curves may be obtained from
modular forms. This was formerly called the Taniyama-Shimura conjecture, which was posed around 1955.
A full proof of the modularity theorem appeared at the turn of the century, but partial progress by Wiles
and Taylor on this result led to the proof of Fermat’s Last Theorem.



In this thesis, we focus on the Hecke operators and prove the strong multiplicity one theorem for modular
forms. This result is usually stated using the language of automorphic forms and representation theory.
Automorphic forms are, broadly speaking, a generalization of modular forms in that they are well-behaved
functions on the complex upper half plane with respect to the action of some action of a discrete topological
(usually matrix) group. We focus on classical modular forms because they are a natural entry point into the
theory of automorphic forms, and the strong multiplicity one theorem is essential to the development of the
theory of modular forms. (“Classical” modular forms are so named in order to distinguish them from other
specialized modular forms appearing in the zoo of almost-invariant functions on the upper half plane with
respect to the action of other matrix groups; for example, the Maass forms or the Bianchi modular forms.)

We continue setting the stage for the strong multiplicity one theorem. The collection of all modular forms
of a fixed weight and level forms a vector space. This vector space may be decomposed into the direct sum
of the space of cusp forms and the space of Fisenstein series. The space of cusp forms is characterized by
the property that the modular forms in this space vanish “at infinity” in a particular way. This property
manifests in cusp forms as having constant term zero in their g-series expansions. For example, both the A
function and f above are cusp forms. An important feature of the space of cusp forms is that we may endow
it with the Petersson inner product. The Eisenstein series are well studied modular forms with a number of
other properties which we do not discuss.

The Hecke operators (n) and T,, are certain kinds of “averaging” operators that decompose the spaces of
modular forms and cusp forms into the direct sum of what are called x-eigenspaces, which interact nicely with
the Hecke operators. The spectral properties of the Hecke operators are of great importance. For starters,
the Hecke operators are normal operators on the space of cusp forms, so there exists an orthogonal basis of
simultaneous eigenfunctions for the space of cusp forms. More interestingly, we have the following: If the
modular form g has Fourier series expansion Y -, ¢, with ¢; = 1, and is a simultaneous eigenfunction
of the Hecke operators T,,, then
Thg =tng

for all n > 1. Hecke eigenvalues are also multiplicative; that is, t,,, = tmt, for m,n coprime. Thus the
Fourier coefficients of f, and the Ramanujan tau function 7(n), are multiplicative.

The strong multiplicity one property of cusp forms is as follows: Let g be a cusp form at level M that is
normalized; that is, g has first Fourier coefficient equal to 1, and is a common eigenfunction of all of the
Hecke operators T;,. If there exists a cusp form f that is a normalized eigenfunction f of the Hecke operators
T, at level N (which need not be equal to M) whose Fourier coefficients, that is, its eigenvalues, agree with
the Fourier coefficients of g at all indices n coprime to some integer L, we show that g is equal to the cusp
form f at level N. In other words, the eigenvalues of g determine the cusp form uniquely.

One elementary application of this result in the theory of modular forms is to determine a basis for the
space of cusp forms. In [DS05, Theorem 5.8.3], a particular set of cusp forms, belonging to an even finer
collection of cusp forms called newforms, is shown to span the space of cusp forms. To obtain the linear
independence of these newforms, suppose that there is a nontrivial linear combination of elements in the
spanning set that equals zero, Y, ¢; f; = 0. One can show that this linear combination is of newforms that
are eigenfunctions of the Hecke operators, with equal Fourier coefficients away from some fixed integer L.
So by strong multiplicity one, each of the f; are equal, from which linear dependence follows.

We develop the necessary theory of classical modular forms and Hecke operators, mostly following [DS05|,
and then transition into the proof of strong multiplicity one in [Miy05, Theorem 4.6.19]. This approach
avoids the language of automorphic forms and representation theory, and instead obtains the result by
studying the L-functions associated to modular forms and their associated Euler products. Almost all of
of the results coming from [Miy05] have been reformulated to follow the more modern perspective found in
[DS05], especially in the development of the Hecke operators.



0 Preliminaries

In this section, we collect the definitions and results needed to define modular forms. We describe the action
of SLy(Z) and its congruence subgroups on the upper half plane of the complex plane and introduce the
congruence subgroups I'o(N) and I'1(N), which will appear in every section thereafter. We discuss modular
curves and compactified modular curves briefly.

0.1 The modular group and congruence subgroups

Let R be a unital ring. The general linear group GL,(R) is the group of n x n invertible matrices with
entries from R; that is, matrices with unit determinant, under matrix multiplication. The special linear
group SLy(R) is the (normal) subgroup of GL, (R) whose matrices have determinant 1p.

Definition 0.1. The modular group SLs(Z) is the group of 2 x 2 integer-valued matrices with determinant
1, and is a subgroup of GLy(R). 1

It is well known (e.g., [Ser78, Chapter 7, Section 1.2, Theorem 2]) that
11 0—-1
(0.1) st22) = ((51).(1 o))

and that SLy(Z) acts on the Riemann sphere C = C U {oo} by fractional linear transformations

tho-e

For ¢ # 0, —d/c is sent to co and oo is sent to a/c; if ¢ = 0 then oo is sent to co. We check that this action
defines a group action: It is clear that the identity matrix sends z to itself, and that
az+b
(q r) (a b) (2) = (q r) (a2+b) _ Geita tr _(gatroz+gbtrd _ (qa+rc qb+rd) (2)
st)\cd st)\cz+d S%ISH (sa+tb)z+ sb+td sa +tb sb+td

for (27),(2%) € SLa(Z). Similarly, GL2(R) acts on C by fractional linear transformations. It follows that
these transformations are (bi)holomorphic and are automorphisms. Furthermore, both I and —I act as the
identity on @, so for any A € SLo(Z), the actions of A and —A agree. The generators in correspond to
the maps

z—=z+1 and z+— —1/z.

We consider particular subgroups of the modular group.

Definition 0.2. For N a positive integer, the principal congruence subgroup of level N, I'(N), is given
by the subgroup

ab ab 10
I(N) = {(C d) € SLy(Z) - (C d) - (0 1) (mod N)}
with the matrix congruence interepreted as congruence modulo N entrywise. ]

Alternatively, I'(N) = (I + N Mz(Z)) N SLy(Z). Furthermore, observe that if N | M, then I'(M) C I'(N),
since x = y (mod M) implies z = y (mod N) whenever N | M.

Lemma 0.3. The principal congruence subgroup I'(N) is the kernel of the natural homomorphism SLo(Z) —
SLo(Z/NZ), so I'(N) is normal in SLa(Z); furthermore, the natural homomorphism is surjective.

Proof. Tt is clear that I'(N) is the kernel of the natural homomorphism SLy(Z) — SLy(Z/NZ), so we prove
that this map is surjective. When N = 1, the natural homomorphism is the zero map (so I'(1) = SLa(Z)).
Let N > 1, and consider an element

(CCL Z) € SLy(Z/NZ),



8 0.1 The modular group and congruence subgroups

so that ad — bc = 1 (here = denotes reduction modulo N). Then for some integer k, ad —bc = 1 + kN. Tt
follows that 1 + kN is a multiple of g = ged(c, d), so that ged(g, N) = 1 and ged(e,d, N) = 1. We show that
there exist integers 4, j such that ¢+ ¢N and d + jN are coprime.

If ¢ # 0, consider a solution j to the system of congruences
j=1(modp) plyg
j=0(modp) ptyg,ple,

which may be obtained via the Chinese remainder theorem. Then ged(c,d + jN) = 1 since any prime p
dividing ¢ will not divide d + jN with j chosen as above (of primes p dividing ¢, when p | g, we have pt N,
and when p t g, we have p  d). If ¢ = 0, then d # 0 and repeat this argument with d,¢ in place of ¢, j
respectively.

With integers ¢ 4+ ¢N and d + jN coprime, there exist integers s,t with s(c¢ +iN) +¢(d + jN) = 1. Then

c+ 1N d+jN
—bc—biN — (k+aj—bi)sN(c+iN)=1+kN+ajN — biN — (k+aj — bi)N =

det (“ —(k+aj —bi)tN b+ (k +aj — bi)s]V) = ad + ajN — (k + aj — bi)tN(d + jN)

and

a—(k+aj—bi)tN b+ (k+aj —bi)sN\ _ (ab
c+iN d+jN cd

as needed. O

Therefore, by the first isomorphism theorem, SLy(Z)/I'(N) = SLo(Z/NZ).
Lemma 0.4. The index of I'(N) in SLy(Z) is [SL2(Z) : I'(N)] = N* [T, 5 (1 = 1/p?).

Proof. We first show that |SLa(Z/p°Z)| = p¢(1 — 1/p?) for a prime p by induction on e.

The determinant is a surjective homomorphism from GLs(Z/pZ) to (Z/pZ)* = Z/(p — 1)Z with kernel
SL2(Z/pZ). Observe that |GL2(Z/pZ)| is the number of ordered bases of (Z/pZ)?, given by (p? —1)(p* — p).
(The first factor counts the number of admissible first basis vectors, and the second factor counts the number
of admissible second basis vectors after choosing a first basis vector.) Then by the first isomorphism theorem,

ISLa(Z/pZ)| = (p* — 1)(p*> —p)/(p — 1) = p(p* — 1) = p*(1 — 1/p?).

By Lemma the natural homomorphism SLy(Z) — SLo(Z/p°Z) is surjective. The surjection SLa(Z) —
SL2(Z/p°Z) is equal to the composition of the natural homomorphisms SLg(Z) — SLo(Z/p“t1Z) and
SLo(Z/p*TYZ) — SLa(Z/p°Z), from which it follows that SLa(Z/p®T1Z) — SLa(Z/p°Z) is surjective also.

Any element v of ker(SLa(Z/p*1Z) — SLa(Z/p¢Z)) is of the form

sp® 145p°)”
fori,j,r,s € {0,...,p—1} and i = p—j (so that dety = 1). Hence |ker(SLa(Z/p*™'Z) — SLo(Z/p°Z))| = p®.
Suppose that |SLa(Z/pZ)| = p3¢(1 — 1/p?). Then by the first isomorphism theorem, (Z/p*H7)| =
P3|SLa(Z/peZ)| = p*pe(1—1/p?) = p*¢+ D (1 —1/p?) as needed. By induction, |SLy(Z/p°Z)| = p*¢(1—1/p?)
for any e.

There is an isomorphism of matrix groups Mo (I, R;) = [[; Ma(R;) for rings R; which restricts to
the isomorphisms GLo(I]"; R;) = [[i—; GL2(R;) and SLo([[i—; Ri) = [1;, SL2(R;) since ([[i—, Ri)* =
H?:l Rlx and 1H?:1 R; — H?:1 lRi'

Let N have prime factorization N = Hp‘Npe. By the Chinese remainder theorem, Z/NZ = leN Z)p°Z. Tt
follows that SLy(Z/NZ) = I,y SL2(Z/p°Z), from which we have

SL2(Z/NZ)| = [ [ ISL2(Z/p°2)| = [[ p*(1 — 1/p%) = N* [ [ (1 = 1/p%)

p|N p|N p|N
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as desired. O

Definition 0.5. A subgroup I" of SLy(Z) is a congruence subgroup (of level N) if for some positive
integer N, I'(N) C I. ]

Note that congruence subgroups need not be normal in SLo(Z).

Let I' be a level N congruence subgroup. We have [SLo(Z) : I'(N)] = [SLo(Z) : I'|[I" : I'(N)], and since
[SL2(Z) : I'(N)] is finite, [SL2(Z) : I'] must also be finite; that is, congruence subgroups have finite index in
SLo(Z).

Definition 0.6. Frequently used congruence subgroups are

) ={(¢ ) esta@: (20) = (5%) (mod M)} and
nv={(¢5est@: (¢ =(57) moam},

where * denotes unspecified quantities and the matrix congruences are to be taken entrywise. ]

For any positive integer N, the inclusions I'(N) C I'1(N) C I'h(N) C SLy(Z) hold.

Lemma 0.7. The map I't(N) — Z/NZ given by (¢4) — b is surjective with kernel I'(N).

Proof. For b € Z/NZ, (}%) has unit determinant and maps to b under the above map. It is clear that the
kernel of the above map is I'(N). O

It follows that Iy (N)/I'(N) = Z/NZ, so that the index of I'(N) in I'1(N) is N. What follows is a similar
result.

Lemma 0.8. The map Io(N) — (Z/NZ)* given by (¢5) — d is surjective with kernel I''(N).

Proof. Let d € (Z/NZ)* be given, and note that ged(d, N) = 1. Let ¢ = 0 (mod N) so that ¢ = kN for
some integer k. Choose k coprime to d so that ged(d, kN) = ged(d,¢) = 1. Then there exist integers a,b

with ad — bc = 1. Then
(g 2) —d and det (CCL g) =1

If A€ Ih(N) and
ab =
A - (C d) — 1,
so d = jN + 1 for some integer j. Since ¢ = 0 (mod N), ¢ = kN and ged(d,c) = 1. There exist integers

a,b with 1 = ad —bc = a(jN + 1) + bkN = a + (aj + bk)N. Reducing modulo N gives a = 1 (mod N). It
follows that A € It (N). Conversely, if A € I'1(N), then A — 1. O

Hence I'(N)/I'(N) = (Z/NZ)*, so that the index of I (N) in Io(N) is ¢(N) = [(Z/NZ)*| = N [, x(1 -
1/p), where ¢ denotes the Euler totient function.

Corollary 0.9. We obtain

. _ [SL2(Z) : I'(N)] _ N[, n(1—1/p%) B
SL(®): o] = (R (TR - T] N N -1~ L+ /o)
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0.2 Modular curves

Recall that SLy(Z), and more broadly GLy(R), acts on the Riemann sphere C by fractional linear transfor-

mations
(a b) (2) az+b
z) = .
cd cz+d

If v € GLy(R) with v = (2%) and z € C, the computation (az + b)(cZ + d) = aclz|” + bd + adz + bez =
aclz|® + bd + adz + (ad — det )z = ac|z|* + bd + ad(z + Z) — det vz shows that

Im((az +b)(cz+d)) Im(—detyz) det~yIm(z)
lez + d|? lez + d|? lez +d*

az+b
0.2 I —Tm )
02) m(y(2)) =1 (25
From the above calculation it follows that if dety > 0 and z belongs to the upper half plane H =
{z € C:Im(z) > 0}, then y(z) € H. In particular, it follows that GLJ (R) = {y € GLy(R) : dety > 0},
SLo(Z), and any congruence subgroup I' of SLa(Z) act on the upper half plane H by fractional linear
transformations.

Definition 0.10. Let I" be a congruence subgroup of SL2(Z). The modular curve Y (I") is the orbit space
\H=A{'z:zeH} T

The modular curves for the congruence subgroups I'o(N), It (N), and I'(N) are denoted by Yy(NV), Y1(N),
and Y(N), respectively.

We topologize modular curves and briefly show they are compact Riemann surfaces. Let I" be a congruence
subgroup. The upper half plane H is given the Euclidean topology (as a subspace of C or of R?), and the
natural surjection

m:H—=Y(I') defined by z— Iz

induces the quotient topology on Y (I") (i.e., the open sets in Y (I") are those with open preimages under 7).

Lemma 0.11. The quotient map 7: H — Y (I") is an open map.

Proof. It suffices to show that the projection 7 takes an open disk B in #H to an open set in Y'(I"); that is,

to show that
U B
yerl

1

is open. Since each y~! is continuous, each v(B) is open, so 7 is an open map. O]

Proposition 0.12. The action of the modular group SLo(Z) on H is properly discontinuous; that is, for
21,20 € H, (including the case z1 = z3) there exist neighborhoods Uy of z1 and Us of zo in H such that for
any v € SLo(Z), if y(U1) NUs # 0, then ¥(z1) = 2z2. Equivalently, for any v € SLa(Z), if v(21) # 22, then
’)’(Ul) N UQ = @

Proof. Let Vi and Va be neighborhoods of z; and za, respectively, with compact closure (e.g. open disks or
bounded open sets). Let y1 = sup_cy, {Im(2)}, Y1 = sup,cy, {Im(z)}, and y2 = inf ey, {Im(z)}. Then from
(0.2), we have for v = (‘g Z) € SLs(Z) not equal to £1I (i.e., ¢ # 0) and z € V; that

 Im(z) _ Tm(2) 1 1
Im(y(2)) = oz + d|° a3 2|z)? = c2Im(z) ~ c*y
and I Y; Y;
Im(y(2)) = D oMM

"~ Jez+d* T Re(cz+d)?  (cRe(z) +d)?’

so that Im(v(2)) < min {1/c¢%y1,Y1/(cRe(z) + d)?}. All but finitely many integers ¢ may be chosen so that
1/c?y1 < y2, and of the finitely many ¢ where this inequality does not hold, we may choose all but finitely
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many d such that Y;/(cRe(z) + d)? < yo uniformly in 2 (since V; has compact closure). Thus for all but
finitely many integers ¢, d, if v = (‘; 3) € SLy(Z), then

(0.3) sup {Im(y(2))} < inf {Im(z)}.

2eVy z€Vo
Thus for v = (‘; Z) € SLy(Z) satisfying (0.3), v(V1) N Vo = 0. We show that there are only finitely many
v € SLa(Z) for which (Vi) N Vs # .

We determine the matrices in SLy(Z) which have fixed bottom row (¢,d). This is equivalent to finding all
matrices 7 = (& B) € SLa(Z) such that 77 has bottom row (c,d), where v € SLy(Z) is a fixed matrix with
bottom row (¢, d). Evidently C' = 0 and D = 1, and since 1 = AD — BC = A, we have that n must have
the form ((1J ’f), and B may be taken to be any integer. Explicitly, the matrices in SLy(Z) with bottom row

(c,d) are v ,
{(01)(¢a)kez}.

where (a,b) is one such pair such that ad — bc = 1. Thus for v € {(0 1)( ) ke Z}, the intersection

yV1)NVe = ((C )V1 + k) N Vs =  for all but finitely many k; that is, for finitely many . So of the finitely
many pairs of integers (¢, d) for which does not hold, only finitely many matrices v € SLy(Z) with
bottom row (¢, d) exist with (V7)) N Va # (.

Let F = {vy € SLo(Z) : v(V1) N Va # 0, v(21) # 22}, which is finite by the above argument. For each v € F
there exist disjoint neighborhoods Vi - of v(21) and Va ., of 2o in #H. Let

V1ﬂ<ﬂfy VM> and U = (ﬂ%ﬂ)

yEF yEF

and note that Uy, Us are open, as elements of SLy(Z) are open maps on ‘H by Lemma Then take any
v € SLo(Z) with v(Uy1) NUs # 0. If v ¢ F, then we must have y(z1) = 2z2. Suppose that v € F. Then
Uy C v Y(U1,4) and Uz C Us , so that v(Uy)NUs C Uy ,NUs . But y(U1)NUs # 0, which is in contradiction
with Uy, and U, , chosen to be disjoint. Hence v € F, so that v(z1) = zo. O

The equality

mawzw%ﬂmmﬂw»=<meOm<Uw%0=ijmmM%>

~yel ~yel’ y,mel
=U WK U (77_17)(U1)> Nzl =Jn < U 7/(U1)> NU;
nel’ yel nel y'er

implies that (U’Y'EF 7'(U1)) N Uz must be empty, which proves the following: (U1) N7(Us) =0 in Y/(I') is
equivalent to (U'VGF’Y(Ul)) NU; =0 in H.

Proposition 0.13. The space Y (I') is second-countable, connected, and Hausdorff.

Proof. Since m is open and H is second-countable, Y (I') is second-countable. As H is connected and 7 is
continuous, Y (I") is connected.

Let m(z1) and 7(z2) be distinct points in Y (I") (so that y(z1) # 23 for any v € I'), and take neighborhoods
Uy of z; and U of 2z, such that for any v € SLy(Z), if v(U;) N Uy # B, then ~(z1) = 22, as per the previous
result Then (ﬂ cr7(U1)) NUz = 0 since y(z1) # 22 for every v € I'. From the discussion surrounding
(0-4), we have that 7(U1) Nw(Usz) = 0 as needed, with 7(U;), 7(Uz) open since 7 is an open mapping. [

What remains is to compactify Y (I") and to put charts on the resulting compact space, which we do without
verifying the details.
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The group GLJ (Q) = {7 € GL3(Q) : dety > 0} acts on QU {oo} by

(a b) (f) _ar+bs
cd)\s) " er+ds
taking oo to a/c and —d/c to co when ¢ # 0, and taking oo to oo when ¢ = 0. Since (‘Z g) is invertible,
the action above never produces indeterminate forms like 0/0. Furthermore, SLy(Z) acts transitively: Any

rational number is of the form a/c, where a and ¢ are coprime. Choose b, d so that ad — bc = 1, from which
we have (¢ 4)(c0) = a/c.

Let H* = HUQU {oo} and define the compactified modular curve X(I') as a set by

X(IN)=I\H" =Y U\ (QU{oc}).
Call the points I's € I'\(Q U {o0}) cusps of X(I') (or of I'). Denote by Xo(N), X1(N), and X(N) the
modular curves X (I'5(NV)), X(I'1(N)), and X (I'(N)) respectively.
Lemma 0.14. The modular curve X (I') has finitely many cusps for any congruence subgroup I .
Proof. The number of cusps of X (I) is equal to the index of I" in SLy(Z). Let SLo(Z) act on I'\(QU {oc})
by v(I's) = I'(ys). The action is well defined: If I's = I't, then s = 7't for some «' € I'. Then I'yy's =
I'y"~s = I's for some v € I'. This group action is transitive since SLy(Z) acts transitively on Q U {oc},
and the isotropy group of I'\(QU {oco}) is I'. Thus [SLy(Z) : I'] = |[I'\(Q U {o0})]. O
It follows that the modular curve X (1) = SLy(Z)\'H* has one cusp, namely, co.
A base for the topology of H* consists of open disks centered at elements of H and the neighborhoods

a({zeH :Im(z) > M} U{oc}) for M > 0,a € SLa(Z),

images of disks centered at oo under elements of SLo(Z). Give H the topology these sets generate. As
fractional linear transformations are conformal maps, for elements v € SLg(Z) with vy(o0) € Q, a disk
centered at oo is mapped to a disk that is tangent to the real axis, containing one rational number.

Choosing this base ensures that X (I") is Hausdorff (whereas taking open disks at each point in Q U {oo}
would not since Q is dense in the real line). Furthermore, every v € SLa(Z) is a homeomorphism of H* with
itself. Give X (I") the quotient topology with the quotient map 7: H* — X (I") defined by extending the
natural projection.

Proposition 0.15. The modular curve X (I") is Hausdorff, connected, and compact.
Proof. See |DS05, Proposition 2.4.2]. O

Before defining charts on X (I"), we collect some results about elliptic points.

Definition 0.16. Let I" be a congruence subgroup. For z € H let I, = {v € I' : y(z) = z}, the isotropy
subgroup of z. Call z € H (and the corresponding point 7(z) € X(I')) an elliptic point of I' if I, is
nontrivial; that is, if the containment {7} C {+I}I, is proper. T

Proposition 0.17. Let I' be a congruence subgroup. Then X (I') has finitely many elliptic points, and for
each elliptic point z of I', its isotropy subgroup I, is finite cyclic.

Proof. See |DS05, Proposition 2.3.3, Corollaries 2.3.4, 2.3.5]. O

It follows that every point z € H has an associated positive integer

IT.|/2 if —Terl.

h, = {+I}/{£I}| = {p | if-Ig¢rl
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called the period of z. Note that h, > 1 when z is an elliptic point, and that for v € SLy(Z), the period of
v(2) under yI'y~! is the same as the period of z under I". As a result, h, = h.,, for all ¥ € I', so that the
period of I'z € Y(I') C X(I') is well defined.

We now define charts for X (I"), starting by defining them on Y'(I"). Since SLo(Z) acts properly discontinu-
ously on H, we have the following:

Corollary 0.18 (to Proposition|0.12)). Let I" be a congruence subgroup. Then each point z € H is contained
in a neighborhood U C H such that for all v € T, if y({U)NU # 0 then v € I,. Furthermore, U has no
elliptic points except possibly z.

Given a point 7(z) € Y(I'), take a neighborhood U for z as in the corollary above. Let 6, = (; ZZ) € GL2(C)
be the map from H (or U by restriction) to C which takes z to 0 and Z to co. Note that the isotropy subgroup
of 0 in the transformation group (8, {+1} I'd;1)o/ {+1} is the conjugate 6, ({1} I/ {£1})5; ! of the isotropy
subgroup of z, hence is cyclic of order h, as a group of transformations by Proposition (note h, may
be equal to 1). Since this group of fractional linear transformations fixes 0 and oo, these maps are given by
w — aw, which are rotations about the origin through angular multiples of 27 /h,. We call §, a “straightening
map” since it takes neighborhoods of z to neighborhoods of the origin for which equivalent points are evenly
spaced apart angularly. (See [DS05| Figures 2.1, 2.2].)

Let p: C — C be given by p(w) = w”>. Then ¢ = pod.: U — V = 9(U) given by (w) = (6(w))"
straightens then “wraps” around the neighborhood into a disk. By the open mapping theorem V' is an open
subset of C. There exists an bijection ¢: 7(U) — V such that ¢ o = 1 (see [DS05, Section 2.2]), which is
a homeomorphism as well. The maps ¢ and open sets U for each z are indeed charts for Y (I).

For neighborhoods containing points in Q U {oo}, we specify charts as follows. Let s € QU {co} be a cusp.
There exists some 05 € SLy(Z) that maps s to co. We define the width of s to be

hs = [SLa(Z)oo /(s {£1} 6] 1) oo |-

Where the period of an elliptic point is the number of sectors of the disk containing the point that are iden-
tified under isotropy, the width of a cusp is the number of sectors (of the infinitely many that come together
to s) that are distinct under isotropy (see [DS05, Figure 2.6]). The width of s is finite and independent of
the choice of d5, and similarly to elliptic points, for v € SL2(Z), the width of v(s) under yI'y~! is the same
as the width of s under I'. Thus hs is the same for all the cusps in I's, making the width well defined on
X(I).

Let U = 0;'({z € # : ITm(2) > 2} U {o0}) and let ¢ = p o &, where p: C — C is given by p(z) = e>7%#/hs,
With V = (U) (an open subset of C), obtain ¢: U — V with ¢(z) = €2™:(:)/hs The effect of 9 is to
straighten U by making identified points differ by a constant, and the exponential map wraps the upper half
plane into a disk centered at 0 (where oo maps to). Similarly, there exists a homeomorphism ¢: 7(U) = V

such that g om = 1 that gives the chart as desired. Hence the maps ¢ and open sets U for each s give charts
on the rest of X (I).

We briefly define fundamental domains obtained from X (I"), without proofs of claims. We first consider
the case I' = SLg(Z). Consider the set D = {z € H : |Re(z)| < 1/2,]z| > 1}. The map 7: D — Y (1) =
Y (SL2(Z)) given by the natural projection z — SLy(Z)z is a surjection, and is not injective since the
boundary half lines where Re(z) = +1/2 are identified by the translation (1) which takes z to z + 1
(similarly, the two halves of the boundary arc where |z| = 1 are identified by the inversion ((1) _01) taking z to
—1/z). (See |DSO05, Section 2.3]) In fact, if two distinct points in D are SLg(Z)-equivalent, then the points
lie on the boundary of D and are either translates or inverses of each other by the aforementioned maps.
So by a suitable identification of points on the boundary of D the map m can be made a bijection. We say
that D is a fundamental domain for H under the action of SLy(Z). A similar procedure may be done
for D* = DU {oo} and X (1) = X (SLy(Z)), by which D* becomes a fundamental domain for H* under the
action of SLy(Z).

For other congruence subgroups I', write SLo(Z) = (J; {1} I'y; for some set of representatives ; of the
coset space I\ SLz(Z), and consider the surjection m: (J;v,D — Y(I') given by z = I'z. By identifying
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the appropriate boundary points of |J I v;D, m may be regarded as a bijection, and so |J ; v;D becomes a
fundamental domain for H under the action of I'. A similar procedure for X (I') produces fundamental

domains of H* under the action of I.
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1 Modular forms

In this section, we define modular forms and discuss the growth of their Fourier coefficients. Then we provide
dimension formulas for various spaces of modular forms as well as definitions of Eisenstein series as examples
of modular forms. We conclude by discussing Dirichlet characters and L-functions corresponding to modular
forms.

1.1 Definitions

Definition 1.1. For an integer k£ and a congruence subgroup I, a meromorphic function f: H — C is
weakly modular of weight k (with respect to I) if

f(v(2) = (cz +d)*f(z) forany ~= ((Cl Z) el, ze H. T

Sometimes we will say that a meromorphic function f: H — C is just “weakly modular” if the weight k and
congruence subgroup I are irrelevant or clear from context.

Definition 1.2. For any matrix v = (‘CI Z) € GLo(R) the factor of automorphy j(v, z) for z € C is defined
by

J(y,2) = cz +d.
For any integer k and v € GL3 (R) define the weight-k v operator |;[y] on functions f: H — C by

(fle[V])(2) = (det7)*/2j(~,2)* f(4(2)), for z € H. t

Note that |[y] composes left to right with other weight-k operators. Since the factor of automorphy j(v, z) =
¢z + d cannot be zero or infinity (as z € H), if f is meromorphic on H, then so is f|x[7], and the number of
poles and zeroes of f|;[v] and f are the same.

So for an integer k and a congruence subgroup I, a meromorphic function f: H — C is weakly modular of
weight k (with respect to I') if

flelh)=f forally e,

and this is equivalent to the original definition above. Note that if f is weakly modular with respect to I,
then the zeroes of f and poles of f are I'-invariant sets.

Lemma 1.3. For any v,n € GLI (R) and z € H, we have j(yn,z) = j(v,n(2))j(n,2). For any function
[+ H = C, we have flx[yn] = (fle[YDIk[n]-

Proof. Elements of GL;(Q) act on column vectors in C? by matrix multiplication, and act on points in C
by fractional linear transformations. Let v = (2 4) € GLJ (Q) and observe that for z € C we have

1(3) = (E58) = (7)) i)
Then for n € SLa(Z) we have
m ('f) = ((7771)(2)) j(yn,z) and
7w (5) =~ (”(f)) j(n,2) = (7(7’1(2))) (v n(2))i(n, 2)-
It follows that j(yn, z) = j(v,n(2))j(n, z). Then for f: H — C,
(flsln) () = (det(yn))*/ 2 (yn, 2)7* () (2))
= (detn)"%j(n, 2) ¥ (det7)*%j(v,n(2)) * F(2(n(2)))
(
(

detn)*/%j(n, 2)~* (flr[) (0(2))
(flelDIkn)(2)- O
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From the lemma it follows that if f: H — C is weakly modular with respect to some set of matrices A, then
f is weakly modular with respect to the group generated by A. So with SLy(Z) = <(é %), ((1) _01)>, a function
f: H — C is weakly modular of weight k with respect to SLy(Z) if

(1.1) f+1)=f((§1)z2) =02+ DFf(z) = f(z) and f(=1/2)= F((OH2) = 2P f(2).

It follows that weakly modular functions of weight k with respect to SLo(Z) are Z-periodic. A similar
phenomenon happens for weakly modular functions of weight k& with respect to congruence subgroups. If I’
is a congruence subgroup of level N, then I'(N) C I', so that I" contains a translation matrix of the form
((1J ’f) for some minimal positive integer h dividing N. To see that h necessarily divides N, observe that if

((1) bf) : ((1) bf) €I, then (5 ng(blhbz)) cr

By a similar computation to ([L.1f), it follows that weakly modular functions with respect to I" are hZ-
periodic. Weakly modular functions with respect to I'(IN) are NZ-periodic, and weakly modular functions
with respect to I'1(IN) are Z-periodic.

Let D = {q € C: |q| < 1} be the open unit disk in C and let D’ = D\{0} denote the punctured open unit disk
in C. The exponential map z — e2™#/" = ¢ is a hZ-periodic holomorphic map which maps H to D’. Since f
is hZ-periodic, it follows that the function f: D' — C corresponding to f defined by f(q) = f(hlog(q)/2mi)
(so f(z) = f(e*>™**/M)) is well defined because a branch of the logarithm is determined up to integral multiples
of 2mi.

The logarithm can be defined holomorphically about each ¢ € D’. It follows that f is meromorphic on D’
since f is meromorphic on H, and so f has a Laurent expansion f (q9) = > ,czanq™ at each ¢ in a punctured
neighborhood of ¢ = 0 (and a,, = 0 for all n sufficiently small). Moreover, if f is holomorphic on H, it follows
that f is also holomorphic on D’.

From |q| = e=27Im /it follows that ¢ tends to zero as Im z tends to infinity. We define f to be meromorphic

(respectively holomorphic) at oo if f has a meromorphic (respectively holomorphic) extension to ¢ = 0. The
Laurent series of f about ¢ = 0 is used to obtain a Fourier series expansion of f about oo, given by

F0) = Y o, a= e

nez

which converges absolutely and uniformly on compact subsets of the half plane {z € Z : Im z > 7} for some
large enough 7 (so that ¢ lies in a punctured neighborhood of zero). When referring to a Fourier series
of a hZ-periodic meromorphic function on H, we mean the expansion obtained in the above manner. If f
is holomorphic on A and is holomorphic at oo, the Fourier series expansion becomes f(z) = > o> ang",
q = e?™#/" valid for z € H. To see that a weakly modular holomorphic function f: # — C is holomorphic
at oo, it suffices to show that limpy, . e f(2) exists or that f(z) is bounded as Im z grows unboundedly.

Definition 1.4. Let I" be a congruence subgroup of SLs(Z) and let k be an integer. A function f: H — C
is a modular form of weight k (with respect to I') if it satisfies the following:

(1) f is holomorphic on H,
(2) f is weakly modular of weight k with respect to I", and
(3) flkle] is holomorphic at oo for all a € SLy(Z).

Furthermore, if for every a € SLa(Z), the coefficient ag vanishes in the Fourier series expansion of f|[a],
then we call f a cusp form of weight k (with respect to I'). The set of modular forms (respectively cusp
forms) of weight k with respect to I" is denoted by My (I") (respectively Si(I)).

Define also the weight k Eisenstein space (of I') by the quotient of the space of modular forms by the
space of cusp forms; that is, & (L") = Myp(I")/Sk(I"). It can be shown that the Eisenstein space may be
obtained as a complement of Si(I") in My (I") under the Petersson inner product (we define the Petersson
inner product in Section but do not prove this result). We briefly discuss the Eisenstein space at the
end of Section [I.2} T
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Later on, for example in Section we specify the congruence subgroup that a modular form is with respect
to by its level; that is, we say that a modular form with respect to I" is “at level N” if I" is of level N.

Recall that the I'-equivalence classes of points in Q U co are the cusps of I'. There are finitely many cusps,
at most the index of I' in SLy(Z), which we showed was finite in the discussion following Definition
Write a cusp s as a(oo) for some o € SLy(Z). We say that f is holomorphic at s f|i[c] is holomorphic at
00, where f|i[a] is viewed as a modular form of weight k with respect to a~'I'a. In view of this definition,
condition (3) of Definition says that f must be holomorphic at the cusps of I. The group a '« is a
congruence subgroup since for some N > 0, the principal congruence subgroup I'(NN) is contained in I" and
is normal in SLy(Z), so that I'(N) = a ' I['(N)a C a ' Ta.

As congruence subgroups have finite index in SL2(Z), only finitely many coset representatives «; in a
decomposition SLa(Z) = |J; I'a; are needed to verify condition (3) in the definition above, and in verifying
that the term ao vanishes for all Fourier series expansions for cusp forms: we have by condition (2) of the
above definition that f|i[va;] = flk[oy] for all y € I

Lemma 1.5. (a) For any v € GL3 (Q), there exists a € SLo(Z), » € Q*, and a,b,d € 7 relatively prime

such that v =ra(gh).

It follows that for f € My(I') and v with v = ra(3Y), since flxlo] has a Fourier expansion, so does
flely]. Moreover, if the constant term in the Fourier expansion for f|p[a] is 0, the same holds for the
Fourier expansion for fli[v].

(b) Let I't, I’y be congruence subgroups with vIyy~! C Iy for some v € GL3 (Q). If f € My (I1), then
flely] € Mg(I3), and the same result holds for cusp forms.

Proof. Let v = (2}) be an element of GL3 (Q). If ¢ = 0, there is nothing to show. So assume that ¢ # 0.
Then write a/c = a’/¢’ with o’ and ¢’ coprime integers; that is, write a/c in lowest terms. Then choose
integers s, ¢ such that sa’ 4+ t¢’ = 1, from which it follows that (_%, %) € SLa(Z). We have

s t _ s t\ (d/cd bje\ _ [sa+tc sb+tc —4
—cad )TN\~ d 1 dfe) — 0 dd-dcb)

There exists an integer r > 0 such that rA € My(Z), from which we can divide through by the greatest
common divisor g of the (three) nonzero entries of rA to find that the nonzero entries of ?A are coprime to

each other. Rearranging, we obtain v = %( 5, t,)fl (gA), which proves the first part of (a).

—Cc a

To see the second part of (a), observe that if v = ra(34), then flp[y] = flelre (3 5] = (fleleD]el(28)].
Since f is a modular form, f|g[a] is holomorphic at co and hence admits a Fourier series expansion of

the form (f|r[a])(z) = Yooy ane?™ /" for some positive integer h. Thus the Fourier series expansion for
(flela]) k(g 4)] is of the form (f[[a(2 5)])(2) = Yonry bpe® @/ Observe that by is proportional to ag.

Part (b) is clear from the following observation. For any a € SLy(Z) we have that yay~! € SLy(Z) and

(flebDlele] = (flklyer™Dlely]-

If a € I, then yay~! € Iy so that (f|x[yay™1])|k[y] = flk[y]. From part (a) deduce the holomorphicity of
(flelyay=1))|k[y] for any a € SL2(Z), and that the result in part (b) is true for cusp forms. O

It is possible to determine if a weakly modular holomorphic function on H is a modular form by investigating
the growth of its Fourier coefficients. First, we prove a few lemmas.

Lemma 1.6. If x is a cusp of a congruence subgroup I' and o € SLy(Z) sends x to oo, then
me0_1~{:tf}:{:|:<(l) }D l:mGZ}

for some integer h > 0.
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Proof. Without loss of generality take © = co by taking oI'o ! in place of I". By a computation, we have

rec{z(§])vez}
We obtain the result by observing that {£({ %) :be Z} /{+I} = Z. O

Lemma 1.7. Let [ be a weakly modular holomorphic function on H of weight k with respect to some
congruence subgroup I'. If there exists a real number v such that f(z) = O(Im(z)™") as Im(z) — oo
uniformly with respect to Re(z), then f is a modular form of weight k. Moreover, if v may be chosen so that
v < k, then f is a cusp form.

Proof. Let x be a cusp of I'. If x = oo, then we may send it to a rational cusp via an element of I" since
I' # I's., and repeat the above argument. So suppose z is rational. Then there exists o € SLy(Z) such that
o(xz) = co. Let h > 0 be an integer satisfying the result of the previous lemma. Then the Fourier series
expansion of f|i[o~!] is

flelo™ D) = D ane®™m=/",

n=—oo

with

zo+h )
/ (flelo™ ) (z)e"2™"=/"dz,  for any fixed zy € H.

20

(1.2) an =3

Let (¢4) = o7, and note that ¢ # 0, since 0! does not fix co. We have that Im(o~!(2)) = Im(z)/|cz + df? =
O(1/Im(z)) as Im(z) — oo, uniformly on |[Re(z)| < h/2. Then by assumption,

(flelo™D(=) = flo™ (2))i(e™ ! 2) 7" = O(Im(2)"™*) (s Im(z) = 00),

uniformly on |Re(z)| < h/2. Choosing zy = iy —h/2 in (1.2)), we have that |a,| = O(y"~*e2™™/h) as y — co.

So if n < 0, then a,, = 0; moreover, if v < k, then ay = 0. It follows that f is holomorphic at all cusps of I,
and has a zero at any cusp if v < k. O

Lemma 1.8. Let {a,}22, be a sequence of complex numbers, and let f: H — C be given by f(z) =
>l a,€?™"*  If a,, = O(n®) for some v > 0, then > a,e* "% s convergent absolutely and uniformly
on compact subsets of H. Moreover,

f(z) =0(Im(z)"""') (Im(z) — 0), and
f(2) —ag = O(e~ ™) (Im(z2) — o),

uniformly on Re(z).

Proof. From I'(s) = lim, 0o #ﬁ(wn) for real s > 0 (Euler-Gauss), we have for v > 0 that

lim n®/(—1)" <_“ - 1) = I'(v).

n—00 n

T

n

Thus there exists L > 0 such that

for all n > 0. Let z = x + 1y, so that

(1.3) ; |an[e*™"%| < L(Z(l)"(vn 1>e2w>

n=0

=L(1—e ™) v L
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It follows that f is convergent absolutely and uniformly on compact subsets of H. Since 1 — e~2™ = O(y)
as y — 0, we have that |f(2)] = O(y~v~!). Furthermore, (1.3) implies that f is bounded as y tends to oco.

Let g: H — C be given by g(z) = Y07 jan+1€*™"#, and observe that g also satisfies the hypotheses of the
lemma. It follows that g is also bounded on a neighborhood of oco. Therefore

f(z) —ag = e*™g(z) = O(e™*™)  (y = o0). H

Combining the previous few lemmas, we obtain the following:

Proposition 1.9. Let f be a weakly modular holomorphic function on H with respect to some congruence
subgroup I'. If in a Fourier expansion of f given by f(z) = > an, €2/ the coefficients a, are of order
O(n") for some v > 0, then f is a modular form.

The following result describes the growth of cusp forms:

Proposition 1.10. Let f be a weakly modular holomorphic function on H. Then f is a cusp form if and
only if f(2)Im(2)*/? is bounded on H.

Proof. We may assume that k is even, and observe that Lemma provides the ‘if” direction of the result.
So assume that f is a cusp form and let g be given by g(z) = |f(2)|Im(2)*/2. Since g(y(z)) = g(z) for
any v € I', view g as a continuous function on Y (I"). Since I" has only finitely many inequivalent cusps,
it suffices to show that g is bounded on a neighborhood of a cusp of I'. Let x be a cusp of I', and let
o € SLy(Z) take z to co. Choose a positive integer h so that ol,0~ " - {£I} = {£(} ’f)m :m € Z}, and let
(flelo™)(2) = 3207 ane®™™#/" be the Fourier expansion of f at z. Then

(01 (2)) = |(flelo™)(2) | Tm(2)*/

S
§ :ane%rznz/h
n=1

Hence g is bounded on a neighborhood of x. O

Im(2)*?  (as Im(z) — 00).

Corollary 1.11. Let f be an element of Sk(I'), let x be a cusp of I', and let o be an element of SLa(Z) that
maps x to co. Let (fl[o™1)(2) = Yoo | ane? /" be the Fourier expansion of f at x. Then a, = O(n*/?).

Proof. Let g = flx[o™1], so that g € Sg(cI'c~!). By Proposition [1.10} there exists a constant M > 0 such
that |g(z)| < M Im(z)~*/2. Thus

lan| = +

h

< Myfk/2627rny/h.

h
/ g(m + iy)e—Qﬂin(m+iy)/hdx
0

By taking y = 2/n, it follows that |a, | < (Me*™/m2=k/2)nk/2, O

Lastly, we record the dimensions of various spaces of modular forms below, without proof (See [DS05, Chapter
3]). These dimension formulas are obtained via Riemann surface theory. In particular, the Riemann-Roch
theorem is used, in combination with the geometric data of X (I"): its genus, number of cusps, number of
elliptic points, and more.

Theorem 1.12. Let k be an even integer and let I' be a congruence subgroup. Let g be the genus of X (I'),
let €9,e3 be the number of elliptic points with period 2, 3 respectively, and let e, be the number of cusps.
Then
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(k=1)(g— 1)+ [Flea + [§les + Gewe ifk>2,
dim My(I') =<1 if k=0, and
0 if k<0,

(k=1(g—1)+ |5ea+ [Eles+ (5 — Dews  if k>4,
dimS,(IN =< g if k=2,
0 if k<0,

In particular, the space of modular forms of weight 0, Mo (SL2(Z)), is isomorphic to C since the genus of
X(1) is 0. Furthermore, M3(SL2(Z)) = 0 and Si(SL2(Z)) = 0 for k = 0,2. For any even integer k > 4,
My (SLa(Z)) = Sk(SL2(Z)) @ CEy where Ej is the normalized weight k Eisenstein series, which we will
define in Section|1.2] and

|[&£] =1 if k=2 (mod 12),

| £ ] otherwise.

dim Sy, (SLy(Z)) = {

Theorem 1.13. Let k be an odd integer and let I' be a congruence subgroup. If —I € I", then both My (I")
and Si(I') are zero. Otherwise, let g be the genus of X (I'), e3 be the number of elliptic points with period 3,
€% &I be the number of reqular and irregular cusps, respectively (see [DS05, Section 3.6]). Then

(k—1)(g— 1)+ | 5]es + Eeree + Ll if | > 3,
0 ifk <0,

dim My (I") = { and

(k=1)(g = 1)+ [§les + (5 — ek + 252ely ifk =3,

dim §(I7) = {0 ifk <0.

Ifetee > 29 — 2, then dim My (I') = €88 /2 and dim S (") = 0. If &8 < 2g — 2, then dim My (') > 528 and
dim S (') = dim M4 (I") — 528 /2.

Dimension formulas for other spaces of modular forms (varying k, N, I') may be found in [DS05, Section 3.9].
Let k£ be an integer and I" a congruence subgroup. Then the dimensions of the Eisenstein spaces are given
by

€00 if k > 4 is even,

eree ifk>3isodd and -1 ¢ I',

fo—1 ifk=2,

dim & () =
M) =\ cex o itk —1and —I¢ T
1 if k=0,
0 ifk<0,orif k>0isodd and —1 € I'.

1.2 Eisenstein series

We define the Eisenstein series for a number of spaces of modular forms to provide some examples of modular
forms. We do not verify any claims in this section.
Elementary Eisenstein series for SLo(Z) are defined for even weights k > 4, by

! 1
Gr(2) =Y ———7, z€H,
P (cz +d)
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where the notation Z/(c,d) denotes summation over all nonzero integer pairs (c,d) € Z2. This sum is

absolutely convergent, and converges uniformly on compact subsets of H. It follows that G}, is holomorphic
on ‘H and we may rearrange the terms of the sum defining G. A Fourier series for Gy, is given by

_ (QWZ)k 2mwiz

Gk(Z) = 2C(k) +2m;0’1€_1(n)6 ,

oo

where 04,1 is the arithmetic function o4_1(n) = Y- ), m*~1. (See [DS05, Section 1.1]) Obtain the normal-
m>0
ized Eisenstein series Fi(z) = Gr(2)/(2¢(k)), which can be shown to be given by
1 1 1 1
Ei(z) = = S Bu(2) = =
k(2) 2 Z (cz+d)* or Ei(2) 2 Z i(y,2)k’

(c,d)ez? ~EP;\ SL2(Z) J
ged(e,d)=1

where P, = {((1) ’f) in € Z} is the positive part of the parabolic subgroup of SLy(Z). It is more elegant to
verify that the normalized Eisenstein series is weakly modular of weight k using the last equality above.

Let g2(z) = 60G4(z) and g3(z) = 140G¢(2), and define the discriminant function A: H — C by A(z) =
(92(2))% —27(g3(2))?. The discriminant function is a nonzero cusp form of weight 12, with Fourier coefficients
ap =0, a; = (27)'2. In fact, the only zero of A is at co. It follows that the j-invariant j: H — C given
by j(z) = 1728(g2(2))3/A(z) is holomorphic on H. The j-invariant is SLy(Z)-invariant, is a surjection, and
has a simple pole at co with residue 1.

We summarize what the Eisenstein series for I'(N) look like for weights k& > 3. Let N be a positive integer
and let 7 € (Z/NZ)? be an element of order 2 written as a row vector, where v is some lift of T to Z? (so ~
denotes reduction modulo N). Let § = (* ) € SLa(Z) with (cy,dy) a lift of ¥ to Z?, and let k > 3 be an
integer. Lastly, let ey be 1/2 if N = 1,2 and 1 otherwise.

Define the Eisenstein series E}(z): H — C by

- 1
BE=er 2 Grar
(¢,d)=v (mod N)

ged(e,d)=1

El(z) = 3 _—

-
R T S EALLE

and it can be shown that

Note that when N = 1, we have from this definition that E} = E}, since there is only one choice of v.

A computation yields the fact that for v € SLy(Z), E}|x[y] = E,”, from which it follows that these series
are elements of My (I'(N)). By symmetrizing, one can define Eisenstein series for any congruence subgroup
I' by

v €C(NNT

where the «; constitute a set of coset representatives for I'(N)\I.

For odd weights k and N = 1,2, the Eisenstein space & (I'(N)) has dimension 0, since —I € I'(N). For k

even or for N > 2, E} vanishes at oo for all & except for (0, 1). One can show that E,(f’d) is nonvanishing
on points in the set I'(N)(—d/c) and vanishes on the other cusps of I'(N). A basis of E(I'(N)) may be
formed by choosing a set of vectors {v} = {(c,d)} for which the quotients —d/c represent the cusps of I'(NN);
it follows from the previous sentence that {E}} is linearly independent. The number of elements in this
set is e (for I'(N)). Thus for all k¥ > 3, it is possible to obtain bases for the Eisenstein spaces (recall
that for odd weights and N = 1,2 the spaces are zero). The basis elements are given by the reductions
modulo S (I'(N)) of the modular forms E}, but it is possible to redefine the Eisenstein spaces & (I'(N)) as
subspaces of My, (I'(N)) so that the basis elements are the Eisenstein series themselves (see [DS05, Section
5.11)).




22 1.3 Dirichlet characters and L-functions

In view of the definition of the normalized Eisenstein series for N = 1, define for any v € (Z/NZ)? of order

N ) )
Gi(z) = Z CEYi

(¢,d)=v (mod N)
It can be shown that (see [DS05| Section 4.2])
v 1 n n~ 1y
Gia)=— > GHRE (),

N cNT)*

where

=Y # for n € (Z/NZ)*.

The Fourier series expansion of G¥(z) for k > 3 and v € (Z/NZ)? of order N is given by

T\ — §(7 \rdv (—2mi)* & v 2mint/N
Gi(2) = 6(en)¢™ (k) P> oi_i(n)e ;

TN 1) 2
where 0
w-{ ek, S T L
and

=Y sealmmtludm

m|n
n/m=c, ( mod n)

In the sum for CE“ (k), we sum over positive and negative d, and similarly for m in the sum for ¢} ;. Similarly
to the Eisenstein series, one may form a basis { G}, } of the Eisenstein space &, (I'(N)) (using the same choice

of {v} as before). Since the n-th Fourier coefficient is of the order n*, it follows from Proposition that
E} is a modular form.

1.3 Dirichlet characters and L-functions

For any positive integer N, denote by Zx the group Z/NZ.

Definition 1.14. A Dirichlet character modulo N is a homomorphism
X: Z5 — C*.
(We will sometimes suppress “Dirichlet” when referring to Dirichlet characters.) ]

The product of two Dirichlet characters x,, defined by pointwise multiplication (xv)(n) = x(n)i(n) for
n € Zj, is a Dirichlet character. The trivial map is a Dirichlet character, called the trivial character. Hence

—

the set of Dirichlet characters of Z3 forms a group called the dual group of ZJ;, denoted Zy;. Since Zy is
a finite group, the image of any character lies in the roots of unity. Thus the inverse of a Dirichlet character
is its complex conjugate character ¥, defined by taking the complex conjugate pointwise: X(n) = x(n) for
n € Z}, where = denotes complex conjugation. Note that the only Dirichlet character of Z;* is the trivial
character 1;.

—

Proposition 1.15. The dual group Z}; is (noncanonically) isomorphic to ZJ5; it follows that the number of
Dirichlet characters modulo N is ¢(N).
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Proof. This is [DF04] Exercise 5.2.14], which states that finite Abelian groups are (noncanonically) self-dual.

Let G = (x1) x -+ - x () be a finite Abelian group (recall the structure theorem for finitely generated Abelian
groups). Define characters x;: (z;) = C* by x; — e2m/1%il for 1 < 4 < r, which have order |;| in </xl\> It is
evident that the group G’ = (x1) X -+ X (x,) is isomorphic to G.

Define the homomorphism p: G’ — G by (X1 .-, xE") = x7'm1 - XS my, where m; denotes the projection
G — (x;). It is evident that ker p is trivial. Let f: G — C* be a character of G, and let 1;: (x;) — G denote
the inclusion z; — (1,...,1,2;,1,...,1). Then fi; € @, and a preimage of f under pis (ft1,..., ftr). The
result follows. O

Proposition 1.16. The groups Zy and Z}; satisfy the following orthogonality relations:

(1.4) > x(n) = { ) > x(n) = { )
e 0 if x #1, —~_ 0 ifn#1

XEZ}

Proof. Let x be a Dirichlet character. If y = 1, then Znezg x(n) = ¢(N). Suppose x # 1, so that there
exists m € Zy for which x(m) # 1. Then Znezg x(n) = Znezg x(mn) = x(m) ZneZ§ x(n), so that
anz;\j X(n) = 0.

Similarly, let n € Z5. If n = 1, erg x(n) = ¢(N). If n # 1, there exists a character n that is not
1 on n, and similarly obtain the equality ergi x(n) = erg(nx)(n) = n(n) erg x(n), from which
erg x(n) = 0 follows. O

Any Dirichlet character x modulo d may be lifted to a character x modulo N when d | N, by the rule
x~n(n (mod N)) = x(n (mod d)) for all n € Z coprime to N. In other words, if 7y q: Z§ — Z is the
natural projection, then xy = x o 7w 4.

However, given positive N,d with d | N and x a character modulo N, it is not always possible to find a
character x4 modulo d such that x = xq o mn,q. But for every character modulo NN there exists a divisor d
of N and a character x4 modulo d such that x = xq 07y 4.

Definition 1.17. The conductor m, of a Dirichlet character y modulo NV is the smallest positive divisor
d of N such that there exists a Dirichlet character x4 modulo d such that x = xq © ™ 4, equivalently, such
that x is trivial on the normal subgroup

ker(myq) ={n € Z:n=1(mod d)}.
A Dirichlet character modulo N is called a primitive character if its conductor is N. T

Note that the only character modulo N with conductor 1 is the trivial character 15, so that the trivial
character 1, is primitive only for N = 1.

Any Dirichlet character xy modulo N extends to a function (abusing notation) x: Zy — C by the rule
x(n) = 0 for noninvertible elements n of the ring Zy. Further extend x to a function x: Z — C by the
rule x(n) = x(n (mod N)). The resulting map x: Z — C is a totally multiplicative (set) function; that is,
x(nm) = x(n)x(m) for all n,m € Z.

For example, the extension of the trivial character 1y to a function on Z is given by

Ly (n) = 1 if ged(n,N) =1,
M0 it ged(n, N) # 1.
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Also note that the extension of any Dirichlet character y satisfies

o {1 V=1
Y= #vs1

Obtain new orthogonality relations from the ones appearing in (1.4) by summing from 0 to N — 1 in the first
orthogonality relation and by taking n € Z in the second:

- _Jo(V) ifx=1, ~ fo(N) ifn=1(mod N),
) ZX(R)_{O i1 2 XM= it n %1 (mod N).

n=0 XEZY

Lemma 1.18. Let N be a positive integer. If N = 1,2, then every Dirichlet character x modulo N satisfies
x(=1) = 1. If N > 2, then the number of Dirichlet characters modulo N is even, of which half satisfy
x(—=1) =1 and the other half satisfy x(—1) = —1.

Proof. The extensions of a Dirichlet character to functions on Z are unique, so it suffices to study Dirichlet
characters given by homomorphisms Z5 — C*. For N = 1,2, ¢(N) = 1 so that the only Dirichlet character
is the trivial one. For N > 2, ¢(N) is even, so there are an even number of characters modulo N.

—

For N > 2, the map ZJ — Z5 given by evaluation at N — 1 (which corresponds to evaluation at —1) is a
nontrivial homomorphism since there exists a character which is not 1 on N — 1. By the first isomorphism
theorem, the result follows. O

Dirichlet characters are used to decompose the vector spaces My (I'1(N)), Sk (I (N)), Ex(I1(N)) into direct
sums of interesting subspaces.

For a character x, define the character (using the same symbol) x: IH(N) — C* by x(v) = x(d,), where
d, denotes the lower right entry of v € I')(IN). (We can also define x on any other group of matrices with
positive determinant and lower left entry a multiple of N.)

Proposition 1.19. For each Dirichlet character x modulo N, define the x-eigenspace of My(I'1(N)) by

My (N, x) = {f € Mp(I1(N)) : fl[v] = x(V)f for all v € IH(N)}.
Similarly define x-eigenspaces of Si(I't(N)). Then the following decompositions hold:

Mi(T1(N)) = P Mi(N,x),  Se(I1(N)) = P Sk(N, %)

We prove this result at the beginning of Section 2:2}

Before defining L-functions for modular forms, we make a few observations. Let I" be a congruence subgroup,
so that by definition there exists a positive integer N such that I'(N) C I, from which it follows that
M (') € My(I'(N)). Furthermore, I';(N?) is contained in

(39 r (50 ={ (8 ) €512 =0 tmod N%), a=a=1 (moa M)},

from which we have
(](\{ (1’) I1(N?) € I(N) ("g ‘f)
So if f € My(T(N)),
=) = F((§ 9)2) = N2 (£ 91) ()
and N=F/2f|, (N 9)] € My(I1(N?)). Indeed, f(Nz) is holomorphic on # since f is holomorphic on H. For
v eI (N?), (§ Ny eI (N)(§9) so that

N2 Dkl = N7F2 e[y (F 91 = N7F2 £ (V)1
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where 4/ is an element of I'(N). Lastly, let o € SLg(Z), and note that SL2(Z) is normal in GLy(Z) so that
(N Na=a/(§9) for some o € SLy(Z). Then

N2 (I DlIela]) (2) = N7 (el (8 9)1) (2) = 0’ (3 9),2) 770/ (V2)) = (Flel D),

which is holomorphic at oo since f € My (I'(N)). If the series expansion of f at cois f(z) = ZZ":O a,e2minz/N
we have the Fourier expansion

FND) = 3 apetmin,
n=0

and vice versa. So for the purposes of defining L-functions for modular forms, it suffices to define them for
modular forms in My (I'1(N)). We require a few preliminary results about Dirichlet series:

Lemma 1.20. Assume that both Y .- apn™* and > - byn™% are absolutely convergent at s = o with
o0 >0 real. If 07 apn™* =507 byn~* on Re(s) > o, then a, = by, for all n.

Proof. By taking differences, it suffices to show that if > >, a,n~*% = 0, then a, = 0 for all n. Since
> oo L apn~® is absolutely convergent at s = oy, it is absolutely and uniformly convergent on Re(s) > oy.
Suppose there exists a smallest integer m such that a,, # 0.

o0 o

By hypothesis, —a, = > ._, 1 an(n/m)=7.
(n/m)=? < n~=°/2. Tt follows that

Let 0 = Re(s) > 09, and note that for n > m?2, we have

o

|am| < Z |an|(n/m)~7
n=m-+1
m2 o0
< Y lal/m)y™+ Y faglnm/%
n=m-+1 n=m2+1
Choose N large enough so that
o0
Z ‘an‘n700 < |am|/37
n=N+1
and choose o > 20 large enough so that
m? N
Yo lanln/m)™ Y7 an|n ™ < Jam|/3.
n=m+1 n=m2+1
With these choices, |an,| < 2|ay,|/3, which is a contradiction. O

Proposition 1.21. Let f be a holomorphic function on H such that:

(1) The Fourier expansion for f,
(o]
f(Z) = Z an€2ﬂinza
n=0
converges absolutely and uniformly on compact subsets of H, and

(2) there exists v > 0 such that
f(z) =O(Im(z)™")  (Im(z) = 0)

uniformly on Re(z).

Then a, = O(n").
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Proof. By hypothesis, there exists a constant M > 0 such that |f(z)] < M Im(z)~". Then

1
/ f(l‘+iy)e_27rin(x+iy)d$
0

S My—ve27rny.

lan| =

By taking y = 2/n, it follows that |a,| < (Me*™27v)nv. O

A converse to the above proposition is Lemma [I.§
Lemma 1.22 (Phragmen-Lindelof). For two real numbers vy, ve with vq < va, let

F={seC:v <Re(s) <wvs}.
Let ¢ be a holomorphic function on a domain containing F satisfying

6(s)| = O(eI™”) (7] = o0, with s = o + iT),
uniformly on F with § > 0. For a real number b, if
|p(s)] = O(|T\b) (|I7] = o) on Re(s) = v1 and Re(s) = vq,

then |¢(s)| = O(|7|") as |7| = oo uniformly on F.
Proof. By hypothesis, there exists L > 0 such that |¢(s)| < Lel™’ . Suppose first that b = 0. Then there
exists M > 0 such that |¢(s)| < M on Re(s) = v; and on Re(s) = va. Let m be a positive integer with

m = 2 (mod 4) and let s = o + 7. Since Re(s™) = Re((o +i7)™) is a polynomial of o and 7 with highest
term of 7 given by —7"*, we have

Re(s™) = =™+ O(|7|" ") (7] = o),
uniformly on F. With m even, Re(s™) has an upper bound on F. Choose m and N so that m > ¢ and
Re(s™) < N, so that for any £ > 0,
|(5)e=?

m

< Me*N  on Re(s) = v; and Re(s) = vs,

and
|¢(s)e€sm’ = O(elﬂé_”m*'KlT‘mA) (|7] = o0, so this quantity tends to zero in the limit),

uniformly on F. By the maximum principle, it follows that |q§(s)easm| < MesN for s € F. Let ¢ tend to 0
so that |¢(s)| < M, that is, ¢(s) = O(|7|°).

Now let b # 0. Let ¢(s) = (s — vy 4 1)? = eb1°8(s=»1+1) (using the principal branch of the logarithm); note
that 4 is holomorphic. Since Re(log(s —v1 + 1)) = log|s — v1 + 1|, we have

b b
[W(s) =ls v + 17 ~ |77 (I7] = o0),
uniformly on F (the notation |s — vy 4 1|” ~ |7|° means that lim| ;o0 |5 — v1 + 1°/17> = 1).

Let ¢1(s) = ¢(s)/¢(s). The function ¢, satisfies the same assumptions as ¢ with b = 0, so by repeating
the above argument with ¢1(s) in place of ¢(s), we find that ¢;(s) is bounded on F. It follows that

l6(s)| = O(|7]") for |7 — <. O

Definition 1.23. To a holomorphic function f: H — C satisfying Proposition [1.21| with Fourier series
expansion f(z) = ZZOZO ane?™™* we associate to it an L-function, given by the Dirichlet series

L(s, f) = iann_s.
n=1

Furthermore, for N > 0, define Ay (s, f) by
Ax(s, f) = 2n/VN) T (s)L(s, ). f
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In the above definition, since a,, = O(n"), the Dirichlet series L(s, f) converges absolutely and uniformly
on compact subsets of {s € C:Re(s) >1+v}. We are interested in L-functions of modular forms f €
M (I'1(N)), which do satisfy Proposition [1.21]

Definition 1.24. For a positive integer N, define wy € GLy(R) by

Wy = (]% Bl)

Its action on functions on H appears in several results forthcoming, so we define it here. ]

Theorem 1.25 (Hecke). Fix positive integers k,N. Let f,g be holomorphic functions on H satisfing the
hypotheses of Proposition with Fourier expansions f(z) = Y oo a,e*™™* and g(z) = > oo, b,e?™"=.
Then the following conditions are equivalent:

() 9(2) = (flelwn])(z) = (VN2)""f(~1/Nz)

(b) Both An(s, f) and A(s,g) can be analytically continued to the whole s-plane, satisfy the functional
equation

and the function
i*by
k—s

is holomorphic on the whole s-plane and is bounded on any vertical strip.

An(s. )+ 5+

Proof. Suppose (a) holds. Since there exists v > 0 such that a,, = O(n?) and b, = O(n"),

o0
S Janle 2™ VN (1 > 0)

n=1
and

Z/ lan|t7e 2/ VNE1dt (0> v+ 1)
n=1 0

are convergent. Hence for Re(s) > v + 1,

An(s, f) = Z an(27rn/\/ﬁ)_s/ tste~tdt
n=1 0
_ Z /00 antsef%rnt/\/ﬁ
n=170

_ /oo 5 < i an@Qﬂnt/\/ﬁ) t*]-dt
0 n=1

= [Pl VR) - ol
0

== [T paVR s [ el VR - ol
S 1

1
Since g(z) = (VNz)~*f(—1/Nz), the above equality becomes

ag ikbo

(1.6) An(s, f) = —— — + 4k /100tk5[g(it/\/ﬁ) — boJttdt + /loo t[f(it/VN) — ag)t~tdt,

s k—s



28 1.3 Dirichlet characters and L-functions

which holds for Re(s) > max{k,v + 1}. By Lemma as t tends to oo, f(it) —ag = O(e™?™") and
g(it) — ap = O(e~2™) so that

/OotS[f(it/x/N)—ao]fldt and /Oot’“*[g(z‘t/\/ﬁ)—bo]fldt
1 1

are convergent absolutely and uniformly on any vertical strip. Therefore the functions these integrals define
are holomorphic on the whole s-plane. It follows by (1.6) that Ax(s, f) is a meromorphic function on the
whole s-plane with Ax (s, f)+ag/s+1i*by/(k — s) an entire bounded function on any vertical strip. Similarly
analytically continue Ay (s, g) to the whole s-plane, satisfying

aop ikbo

17) i An(k—s,g) =20 _
( 7) ? N(k 879) S k— s

+ i’f/ t*=5[g(it/V'N — bo)Jt " dt +/ t°[f(it/VN) — ao)t'dt.
1 1
It follows from (1.6) and (1.7) that Ax(s, f) = i*Ax(k — s, g).

e” ox

Conversely, suppose that (b) holds. Since e™¢ €°* is a Schwartz function for ¢ > 0, the inverse Mellin

transform )
et

= — I'(s)t~°d
2m Re(s)=0c (S) °

holds for ¢ > 0. It follows that
. I s
fliy) = ag + Py ; G /Re(s)_a I'(s)(2mny)~°ds

for any @ > 0. Let a > v + 1, so that L(s, f) = >..—, a,n~*% is uniformly convergent and bounded on

n=1
Re(s) = a. In this case, Stirling’s estimate I'(s) ~ v2r77~Y/2e=™I71/2 (for s = o + i and |7| — o0)
shows that Ay(s, f) = (21/V/N)~*I'(s)L(s, f) is absolutely integrable, so that the order of integration and
summation above may be interchanged to obtain

. 1 —s
(1.9 fi)=aot g [ (VN (s, f)ds.
T JRe(s)=a
Since L(s, f) is bounded on Re(s) = a, by Stirling’s estimate we have for any p > 0 that
(1.9) [An (s, /)l = O(|Tm(s)[ ") (| Tm(s)] = o0)
on Re(s) = . Choose § so that k — 8 > v + 1. Using a similar argument we deduce that for any g > 0,
[An (s, /)l = [An(k = 5,9)| = O(|Im(s)[ ") (| Tm(s)[ — o0)

on Re(s) = 3. By assumption, Ay (s, f) +ao/s+i*by/(k — s) is bounded on the vertical strip 8 < Re(s) < a.
Thus for any p > 0, Lemma implies that (1.9 holds uniformly on the strip 8 < Re(s) < a.

We may also assume that o > k and 3 < 0. Observe that (v/Ny) *An(s, f) has simple poles at s = 0,k
with corresponding residues —ag, (v Ny)~*i*by. Combined with the fact that (T.9) holds uniformly on the
strip 8 < Re(s) < «, we may change the path of integration from Re(s) = a to Re(s) = 8 in (1.8) to obtain

Fliy) = (VNy)Fikby + = (VNy) = An(s, f)ds.

2mi Re(s)=8

From the functional equation in (b), we have

1
fliy) = (VNy) FiFby + — (VNy)~*i* An(k — s, g)ds
211 Re(s)=8
1
=i*|(VNy) by + — (VNy)* FAn (s, g)ds
2mi Re(s)=k—p

= i*(VNy)"Fg(~1/iNy).

Since f,g are holomorphic on H, it follows that f(z) = i*(v/Nz/i)"%g(—=1/Nz), or equivalently g(z) =
(\/Nz)fkf(—l/]\fz). O
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Corollary 1.26. If f(z) € Si(N, x), then because any element of S,.(N, x) satisfies the conditions of Propo-
sition (see Corollary , it follows that An(s, f) is holomorphic in s and satisfies the functional
equation

An(s, ) = i*An(k = s, flilwn]).



30

2 Hecke operators

We outline how double cosets act on spaces of modular forms, and using them we define the Hecke operators
(n) and T,, on the space My (I'(IN)). The Hecke operators are akin to “averaging” operators which act on
each of the eigenspaces from Proposition [I.19} We collect several properties of the Hecke operators for later
use. For example, if a modular form is a common eigenfunction of all of the Hecke operators T, then its
Fourier coefficients are proportional to its eigenvalues. Following the discussion of the Hecke operators, we
restrict our view to the space of cusp forms Si(I'1(N)), on which we define the Petersson inner product and
find adjoints to the Hecke operators (p) and T}, for primes p not dividing N. By doing so, we deduce that
all of the Hecke operators (n) and T), are normal operators on Si(I1(N)) whenever n is coprime to N.

2.1 Double coset operators

Let I'y, I’y be congruence subgroups of SLy(Z). For o € GLJ (Q), the set

InNaly = {yiay: :y1 € [N, 72 € I3}

is a double coset in GL;r (Q). The group I acts on the double coset I'tals on the left by multiplication,
partitioning it into orbits of the form I}, where 8 = y,as is some representative for this orbit. We show
that the orbit space It \I'1al% is a finite disjoint union | | p I 3; for some choice of representatives ;.

Lemma 2.1. Let a € GL (Q) and I' be a congruence subgroup. Then o™ I'aNSLy(Z) is also a congruence
subgroup.

Proof. There exists N such that I'(IV) is contained in I'. Let M be the least common multiple of N and the
entries of the matrices o and a~! so that I'(M) C I' and Ma, Ma~! are integer-valued matrices.

Observe that I'(M?) is contained in I + M3 My (Z) so that
al(M*)a™ C a(I + M3 My(Z))a ™ =1+ M - (Ma)My(Z)(Ma™") C T+ M My(Z).

Elements of a"(M?)a~! have determinant 1, so al'(M3)a™! C SLy(Z), from which it follows that al'(M3)a~! C
I'(M). Hence I'(M3) C a™'I'(M)a C a™'I'a, and so I'(M?3) C a='I'a N SLy(Z). O

Lemma 2.2. Let a € GL;(Q) and I, Iy be congruence subgroups. Let I's = a 'Ia NIy C I'y. Then the
map Iy — Ialy given by left multiplication by «, 2 — aya, induces a natural bijection of the coset space
I3\Iy to the orbit space IN\I'als.

In other words, {y2;} is a set of coset representatives for I's\I> if and only if {avys ;} is a set of orbit
representatives for I'\I'nals.

Proof. Tt is evident that the map Iy — I'1\I1al» given by 7o — Ija7s is surjective, since elements of
I\Inaly are of the form I'tyiays for some v € I and v2 € Ih. Two elements v2,75 € I's map to the
same orbit if oy, = [Navh, that is, if "yé'ygl € o 'INa. It follows that by taking I3 = o~ 'Iia NI} as
above, that the induced map from the coset space I'5\Ix — I'1\I'1al% is a bijection. O]

Lemma 2.3. Let I1,15 be congruence subgroups. Then they are commensurable, that is, the indices
[Fl : Fl ﬂFQL[FQ : Fl ﬁFQ] areﬁnite.

Proof. There exist positive integers N1, Na such that I'(Ny) C It and I'(N2) C I's. Then I'(lem(Ny, N3)) C
I'(N1) N I'(Ny) C It N I since Np, No divide their least common multiple. Then

[Fl : F(lcm(Nl,Ng))] = [Fl : Fl ﬂfg}[]“l OFQ : F(lCH’l(Nl,NQ))] and
[FQ : F(lcm(Nl,Ng))] = [FQ : Fl ﬂFQHFl ﬂFQ : F(lcm(Nl,Ng))]

The indices [I7 : I'(lem(Ny, N2))], [I2 : I'(lem(Ny, N2))] are finite (see the discussion following Defini-
tion , so that the indices [I7 : It N I3, [I3 : I N Is] are also finite. O
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In Lemma since a1 I'a N SLy(Z) is a congruence subgroup, the coset space I3\l from Lemma [2.2] is
finite, so that the orbit space I'1\I1al% is also finite as desired. With this result, we can define an action of
double cosets on modular forms.

Definition 2.4. Let a € GL$ (Q) and I, I be congruence subgroups. The weight-k I'ial, operator
(“double coset operator”) |p[[1als] is given by

flellals] = (det a)* 271" £ ]85,

where {3;} is a set of orbit representatives of I'tals (that is, Itals = | ;I B;). It takes modular forms in
M (I't) to modular forms in My (I%), and takes cusp forms in S;(I7) to cusp forms in S,(I%). T

We check that this definition is well defined, that is, independent of the choice of orbit representatives for
Ial. Let B = ymays and B/ = vjavyh represent the same orbit in I \Ialy, so that I8 = IF. Tt
follows that ays € I'ayh. Since f is weight-k invariant under Iy, we have f|[8] = flklave] = fle[mars] =
flelavd] = flk[B’]- Thus the action of the double coset 'yl is well defined.

We also check that the double coset operator takes modular forms to modular forms and cusp forms to cusp
forms. For f € My (1), we verify that f|i[I1al%] is I's-invariant and holomorphic at the cusps of I's.

Note that any 2 € I permutes the orbit space I'1\I1al% by right multiplication. So given a set of orbit
representatives {5;} for IN\I'taly, then {872} is also a set of orbit representatives. Therefore

(flellal2))|kye] = (det a)/21 Zf|k[ﬁﬂz] = flx[I1al?).

It follows that f|x[l1al3] is weight-k invariant under I as needed.

Observe that for any f € My(I) and any v € GL3 (R), the function f|;[y] is holomorphic at infinity; that

is, it has a Fourier expansion
o0

(f'k[’ﬂ)(Z) = Zane%ﬁlnz/h

n=0

for some positive integer k by Lemma [I.5] Then for any § € SLy(Z),

(fle[T1al2))[x[6] = (det a)*/>~" Z fl8;0]

for some set of orbit representatives {f;} of I'1al%, from which holomorphicity of f|;[I}al%] at all cusps of
I; follows, since each summand above is holomorphic at infinity. In the case that f is a cusp form, f|g[Y]
vanishes at infinity for any v € GLJ (R) as we saw in Lemma Therefore the double coset operator takes
modular forms to modular forms and cusp forms to cusp forms.

Particular choices of Iy, I'; yield notable double coset operators:

(1) If Iy € It and a = I, then f|y[l1als] = f and the double coset operator |,[I}als] is the natural
inclusion of My, (I'7) into My (I%).

(2) If I'hy = a~'Ia, then f|i[Ialy] = (det a)*/2~1f|;[a], and the double coset operator |[I[1al%] is an
isomorphism of My (1) with My (I%).

(3) Finally, if It C Iy and a = I, take {y2,} to be a set of coset representatives for I1\I>. Then
flelliad»] =375 flk[v2,], and the double coset operator | [l al3] is the natural trace map projecting
M (I') onto its subspace My (I2) by symmetrizing over the quotient, a surjection. (The action of Iy
on I is to permute the coset representatives of I'1\I5, so the action of I on elements in the image of
the natural trace map is the identity.)
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Any double coset operator is a composition of these three operators. Indeed, given I7,[%, and «, set
I3 =a 'NManlyand I = alsa™! = ITNalya™t. Then I'y C I, a 'Ta = I3, and I3 C I'y. Composing
their corresponding double coset operators, we have for f € My (I}) that f — f — (deta)®/2~1f|i[a] —
(det o)®/2-1 > flelare,;]. By Lemma the composition above agrees with the double coset operator
|k [FlaFQ] .

2.2 Hecke operators (n) and T,

Recall the congruence subgroups

Iy(N) = {(“ b)eSL2 (‘é ( ) modN)} and
Fl(N)—{(a b)eSL2 (‘CL ( ) modN)}.

Since I'1(N) C Io(N), we have the containment My (Io(N)) C Mg(I1(N)) of modular forms. We define
the two operators (n) and T, on the larger space My (I'1(N)).

Let a € I'h(N) and consider the weight-k double coset operator |;[I1(N)ali(N)]. From Lemma we
have that I'1(N) is normal in IH(N) and that IH(N)/I1(N) = (Z/NZ)*, so the double coset operator
|e[I1(N)al1(N)] is of the form (2) in the list of notable double coset operators following Definition
Hence this double coset operator translates a function f € My (I (N)) to flx[In(N)al1(N)] = flkla] €
My(I1(N)). In this way the group Io(N) acts on Mg(I1(N)), and its subgroup I'1(N) acts trivially.
Thus Iy(N)/IT1(N) 2 (Z/NZ)* acts on M (I'1(N)). In particular, if d € (Z/NZ)*, there exists (% %) €
Ih(N) /I (N) with d = d (mod N). From this fact, we obtain the diamond operator (d) on /\/lk(l"l( )):

)
)

b
d
b
d

Proposition 2.5. The action of d on My (I'1(N)), called the diamond operator (d): Mp(I'1(N)) = My(I1(N)),
s given by

/AN

(d)f = flila]  for any o = <CCL, Z,) € IH(N) with d = d (mod N).

For any character y, we have that the space My (N, x) from Proposition is really the “y-eigenspace of
the diamond operators”; that is,

Mi(N,x) = {f € Mp(I'(N)) : {d)f = x(d) f for all d € (Z/NZ)*},
with a similar definition for Si(N,x). In other words, the diamond operator (d) acts on My(I'(N)) =

G}X My (N, x) by acting on each y-eigenspace by multiplication by x(d). We can now give an elementary
proof of Proposition [L.19

Proposition 2.6. The following decompositions hold:

N)):@Mk(NaX)v Sk Fl @Sk

Proof. For any character x: (Z/NZ)* — C*, define the operator m, : My(I1(N)) = Mp(I1(V)) by

Observe that for any d,e € (Z/NZ)*, we have (d){(e) = (e)(d) = (de): For any f € My(N,x), we have
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(d)(e)f = (d)x(e)f = x(de) f as needed. It follows that

Wi:ﬁ > X(d)‘1<d><¢(1N) > x(e)‘1<e>>

de(Z/NTZ)* e€(Z/NZ)*

:¢(11\r)2 S x(de)de)

d€(Z/NZ)* e€(Z/NZ)*

- LS @)

de(Z/NTZ)

Since , is idempotent, it follows from linear algebra that it is a projection operator of My (I1(NV)) onto
some subspace. Let f € My (I1(N)). Then

E@mN =l X @@ =xE@gnm X xlde)  def = x(em ()
de(Z/NT) de(Z/NT)

for any e € (Z/NZ)*. Furthermore, for any f € My(N,x), we have that m,(f) = f. Hence m, is the
projection of My (I'1(N)) onto My (N, x).

Choose the characters so that they satisfy the orthogonality conditions in Proposition Then
1 —1
Ty =~ x(d)~(d)
1
-~ 2 (Xx@)
d X

= (1)

—-

A, (1 (V)

and for two nonequal characters y, x’, we have

1 g LNt L (St )
ooty = 5y SN @y = 5 S X e = i (S0 ) =0

It follows that the y-eigenspaces span My (I (IN)) and are pairwise disjoint, which proves the result. The
same argument follows for cusp forms. O

We extend the definition of the diamond operator (d) for d € (Z/NZ)* to (n) for n € Z*.

Definition 2.7. The Hecke operator (n): My(I'1(N)) — My(I'1(N)) for n € Z* is given by the zero
operator when ged(n, N) > 1 and is given by (m) when ged(n, N) = 1 (where = denotes reduction modulo
N). t

Let p be a prime number, and consider the weight-k double coset operator Tp,: My (I (N)) = My(I1(N))

given by T, f = f|x[I11(N)al}(N)], where a = (§9).

Lemma 2.8. For a prime p, the double coset It (N) (5 )1 (N) is given by
1
(N (A9 I (N) = {7 eMy(Z) : 7y = (0 ;) (mod N),dety = p} .

Proof. We sketch the proof since it is rather computational. The containment

NN (A9 (W) {7 € My(Z) : v = ((1) ;;) (mod N),dety = p}
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is clear. We show that the other containment holds.

Let L = 7Z* and let Ly = {(y) € L:y =0 (mod N)}. Let My(Z) acts on L by left multiplication. Choose
v € My(Z) such that v = ((1) ;‘,) (mod N) and dety = p. Because the determinant of ~ is positive, [L :
vLo] = [L : Lol[Lo : vLo] = Np.

By the theory of finitely generated Abelian groups there exists a basis {u,v} of L such that det(u v) =1
and vLg = muZ ® nvZ, where 0 < m,n, m | n, and mn = Np. Write the first column of v as (ag) with
ay =1 (mod N) and ¢ = 0 (mod N). We can also write the first column of v as ve; € yLg (e; is the i-th
standard basis vector), and hence is the zero vector modulo m. Since ged(a., N) = 1, we have ged(m, N) = 1,
from which we deduce that m =1 and n = Np. Hence 7Ly = uZ ® NpvZ.

There are unique subgroups Ly = uZ & NvZ and vL = uZ & pvZ, of index p and N respectively inside
L = uZ & vZ, that contain yLo. Let v3 = (u v). Because u € Ly, it follows that v; € Ih(N). Let
Yo = (’yl ((1) 2))717 = (‘; Z) be an element of GL3 (Q) with determinant 1. The condition for ve; € vLg to
hold is given by au + cpv € uZ @ NpvZ, so that we must have a € Z and ¢ € NZ. Similarly, for e, to be an
element of vL we must have b,d € Z. It follows that v, € I'y(N). Since a, =1 (mod N), ve; =e; (mod N)
and so the equation v = v ((1] 2)72 shows that au; = 1 (mod N) (where w; is the first component of ),
using only that v1,72 € To(N). Thus if v = 71 (5 )72 for 71,72 € Io(N) such that either 71 or 2 lies in
I''(N), then both do.

It now suffices to show that I'y(N)(§9)Io(N) = I'(N)(§9)Io(N). The containment In(N) (5 5)Io(N) 2
I (N) (5 9)To(IN) is clear. For the other containment, note that Iy (N)\Ip(N) is represented by matrices of
the form (& %) € SLa(Z). Thus it suffices to show that for each such matrix there exists a matrix § € I (V)
such that (& 5) (6 9)Io(N) = 8(5 5)Lo(IN); equivalently a matrix 6’ € Iy (V) such that

(60 7 (w5 G0 e n.

If p | N, then ¢’ = (d_l\;ﬁ _11) is a valid choice. Otherwise, if p{ N, then any &' = (3 ;) withd =1 (mod N)

and d' = —a (mod p) is a valid choice in this case. O

So in the definition of T},, we may replace o with any matrix in the double coset I (N)(§ 5) I (N).
We record the explicit action of T}, on elements of M (I (N)).
Proposition 2.9. The operator T,,: My (I'1(N)) = My(I'1(N)) is given explicitly by

7= 1P fel(o)] ifp|N,
WIS ARG )T AT IR ) ()] i A N, where mp —nN =1,

1
0
15
0

SRS

Proof. We find orbit representatives for Iy (N)\I'1 (N) (g ) I (N) by finding coset representatives for I3\ I (N),

where T3 = (59) "' IV (V) (39) N I (V).

Define the subgroups
rp)={(¢}) €SLa(2) : (¢ ) = (:9) (mod p)}
and I'Y(N,p) = I''(N) N I°(p). A short computation reveals that I3 is equal to I'Y(N,p). We show that

the coset representatives of I'3\I'1(N) are v ; = ((1] ]1) for 0 < j < p.

Given ~yp = (‘Z Z) € I'i(N), we have v, € I'3yy; if ’YQ’}/;} € I's. Observe that v2,72,; € I''(N), so it suffices
to find j so that the upper right entry b — ja of 7272_,]1- is some multiple of p.
If pfa, then j = ba™! (mod p) is a valid choice. So in this case we find that vo ; = ((1) {) for 0 < j < p form

a complete set of coset representatives as needed (for each representative, one may also take j + Ip for any
integer ! in place of j).

If p | a, then b — ja cannot be zero (mod p) for any j; if there was a choice of j that made b — ja zero, then
p would divide b and hence also det (g Z) = 1, which is impossible. The cases where vo € I'1(N) with p | a
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occur if and only if p f N, in which case 2 ; = (é 7) for 0 < j < p fail to represent I3\ (N). To complete
the set of coset representatives, set

V2,00 = (WK/Z) Tf) where mp — nN = 1.

So given v, = (%) € I(N) with p | a, we have 727211)0 = (1 9) (mod p) as needed. It is also routine to

check that the «, ; represent distinct cosets.

The corresponding orbit representatives of It (N)\I1(N)(§ 5)I1(N) are given by avys,; for each j:
ON?J:(Op) for 0 <j <p, 0472,002(%2) (8(1)) if pt N. O

A related result, which we do not prove but will be used later, is the following:

Lemma 2.10. Let N be a positive integer and p a prime. Then

= TN (G 5) v ifp | N,
F(pN)(op)Fl(N) {Hg_op@m(gg)% if p1 N;

here 7, for 0 < v < p is an element of IH(N) such that v, = ((1) '{) (mod p), and 7, for pt N is an element
of I'v(N) such that

( 0, _Oa) (mod p) for a coprime to p,
P Z(9) (mod N).

See [Miy05|, Lemma 4.5.11] for details.
Lemma 2.11. Let f € My (I'1(N)) have Fourier expansion

%)
= Zan(f)qnv q:e27rzz'
n=0

Then T, f has Fourier expansion

(Tpf)(2) = anp(£)g" + In@P* D an((p) f)g"”

= > (anp(F) + In @) anp(P)F))a"
n=0

where a,,, = 0 whenever n/p is not an integer.

Proof. Let p | N. For 0 < j < p, we have

PG D) =ty ()
— 5r;)an(f)e27rin(z-i—j)/p
1 o0
=- an(f qgu;w’
2

where ¢, = e?™2/P and Ly = e2™/P We use Proposition and the observation that the geometric sum
?;é pund is equal to p when p | 7 and is zero otherwise to obtain

(Tpf)(z) = ">~ 12 FIRlG D)) Yoo NG = an(fla
n=0

n=0 ( mod p)
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When p 1 N, the series expansion for T}, f is the one given above plus the term

PR ) B D (=) = 2271 (@) F)lel(B 9] (2)
=" 2 ((p) ) (p2)

o0

=p"1 D " an () g™ O
n=0

Corollary 2.12. If f € My(N,x) has Fourier expansion f(z) = > " an(f)q", with ¢ = €*™*%, then T, f
has Fourier expansion

oo

(T, 1)(2) =Y (anp(f) + In(P)x(P)P" s (£)a"

n=0
where a,;, = 0 whenever n/p is not an integer. This follows directly from the definition of the diamond
operator.

Lemma 2.13. Let d,e € (Z/NZ)* and p,q be prime. Then
(1) )T, = Tp(d),

(2) (d){e) = (e)}(d) = (de), and
(3) 1,1 =1qT).

Proof. To show (1), let a = (g3) and observe that yay™' = (§3) (mod N) for any v € Io(N). If

I(N)ali(N) = U, I1(N)B), then by Lemma and the fact that It (N) is normal in I'o(N) we have
that

I(N)ali(N) = I(N)yay  I(N) = 4T (N)al 1 (N)y~ *’YUH )8y~ UH Byt

Comparing the decompositions I't (N)al (N) = U; I1(N)B; = U, I’l( )78y~ !, we find that U; I1(N)Bjy =
U; I (N)vB;. Thus for any f € Mg(I1(N)) and any v € I5(N) with lower right entry 6 = d (mod N),

ATpf =D fIklBi) = 3 FlbyBs) = T (d).

Because (d) and T, commute, it follows that the action of T, on My (I1(NN)) respects the decomposition
My (I (N)) = @X My (N, x), and similarly for Si(I1(N)) = EBX Sk(N, x) and & (I[1(N)) = @X EL(N, x).
That is, T, maps a x-eigenspace to itself.

To see (2) and (3), it suffices to show that these equalities of operators hold on elements of My (N, x), for
each y.

Indeed, let f € My(N,x). Then
(d)(e)f = (d)x(e)f = x(d)x(e)f = x(de) f = {de) ],
and similarly obtain that (d){e) = (e)(d).

To see that , and T, commute, we investigate the Fourier coefficients of T),(T,(f)) for f € My(N, x). From
Corollary [2 we have that the n-th Fourier coefficient of T},(f) is an(Tpf) = anp(f) + x(2)P* L anp(f),
where ay, /), f = 0 whenever n/p is not an integer. Applylng this formula twice yields the n-th Fourier
coefficient of T,(T,(f)):

an(Tp(qu)) = anp(qu) (p)pk lan/p(T f)
= anpe(f) + x(q )qk 1amﬂ/q( )
+ X" g/ (f) + x(0)d" 1an/pq(f))
= tnpg(f) + X(D 4" g () + X0)P" ™ angsp(f) + X(P0) (00)* ™ O ypg (f)-

Since the above expression is symmetric in p and ¢, we obtain the result. O
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Definition 2.14. The Hecke operator T,,: My(I'1(N)) — My (I (N)) for n € Z* is defined inductively.
Let Ty = idaq, (ry(ny) (the identity operator), and above we had defined T,,f = f[x[I1(N) (5 5) 1 (V)] for
primes p. For prime powers, let

Ty = T, Tpr—1 — p" 1 (p)Tpr—2  for r > 2.

Then for n =[], p;’, define

T, =[[7,,
i
where the previous lemma justifies the multiplicative notation above. T

By Lemma the mapping n — (n) is totally multiplicative; that is, (nm) = (n)(m) for all positive
integers n, m. The same lemma implies that the mapping n — T;, is multiplicative; that is, for n, m coprime,
Toms = T T,

Definition 2.15. The Hecke algebra R(N) is the polynomial ring

From previous results it follows that R(N) is a commutative unital ring. T

Often (and especially so in the next section), we will restrict the action of the Hecke operators to an arbitrary
x-eigenspace. We use the same symbols to denote the restrictions of these operators, since it will be clear
from context when we are taking the restriction.

In [Miy05|, the Hecke algebra is generated by Hecke operators T'(p), T (p, p) that are defined differently. The
Hecke operators T'(p),T'(p,p) are related to the Hecke operators T}, (p) by the equations T'(p) = T, and

T(p,p) = p"2(p).

Lemma 2.16. Let K be a commutative unital ring, and assume that two sequences {t,}ro,{dn}rr, of
elements of K satisfy the following conditions:

(1) tl = d1 = 1, and

(ii) dpn = dind, for any positive integers m,n.
Then the following are equivalent:
(1) If ged(m,n) =1, then ty, = tmt, and
tptpe = tpe+1 +pdptpe.71
for all prime numbers p and all positive integers e.
(2) The formal Dirichlet series .- | t,n™* has formal Euler product

oo
Z tan~° = H(l —tpp~° —i—pdpp_Qs)_l.
n=1 peP

(3) For any positive integers m,n,

tmtn = > it

>0
l|ged(m,n)
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Proof. We show that (1) implies (2). From the first condition of (1), we have formally that

gtnn_s =] (Zt ep 68).

p€eP

From the second condition of (1), we have

(1 —tpp~* + pdpp~2%) ( Z tpep_es> =1,
e=0

from which (2) follows.

We show that (2) implies (3). Formal Dirichlet series and formal Euler products are elements of the ring
of formal power series K[[p~° : p € P]]. Finding inverses in K[[p~*]] of the elements 1 — t,p~° + pd,p~2*
recursively (cf. [DF04) Exercise 7.2.3(¢c)]), and comparing coeflicients of

Z =[J@—tpp™ + pdpp>) "

pEP

reveals that the sequence {¢,,},- , is multiplicative. That is, if ged(m,n) = 1, then tpn = timty,.

Let m = HpeJP’ p® and n = HpeJP’ p! be the prime factorizations of m and n. Then

Z ldltmn/l2 = H ( Z pgdpgtpc+f2g).

>0 peEP *0<g<min{e,f}
l|ged(m,n)

Therefore it suffices to prove that (2) implies (3) in the case that m and n are powers of the same prime p.
By assumption, we have

(1 _ tpp_s +pdpp—23)—1 — thep—es-

Let 7, and §, be two indeterminates over Q, and define a (unital) ring homomorphism : Z[7,,d,] — K by
(1) = tp and ¥(J,) = dp. Define the elements 7, and d,e of Z[7,,d,] by dpe = (0,)¢ and by the formal
power series equality

(2.1) ZTpep ¢ = (1 —7pp* +pdpp 2°) 7",

It follows that ¢(7pe) = tpe and ¢Y(dpe) = dpe

Let u, v be indeterminates over Q, and define a ring homomorphism ¢: Z[7,, 6,] = Q[u,v] by ¢(7,) = u+v
and ¢(d,) = uv/p. Since u + v and wv/p are algebraically independent over Q, ¢ is injective. Viewing
Z[tp,d,) as a subring of Q[u,v], we may factor 1 — 7,p~* + pd,p~2* into (1 —up~*)(1 —vp~*). Inverting this
element and comparing coefficients in , we find that

Tpe = Z uv? = (ut — o /(u — v).

1+j=e
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Assume that 0 < e < f. Then
ety = (X W)@ o)
i+j=e
= <uf+1 Z wf Iyl — pftt Z UJU@—J> /(u —v)
j=0 j=0
€
= Z w99 (ueT 201 et F 2081 1y )
g=0
= Zpgépg Tpe+f729 .
g=0
By taking ¢ on both sides of the above equation, obtain
€
tpetps = Zpgdpgtpe+.f—2g
g=0
as desired. So in all cases, (2) implies (3).
To see that (3) implies (1), observe that (1) is a special case of (3), with m = p and n = p°. O
Theorem 2.17. We have
(1) Tan = Z 1>0 lk_1<l>Tmn/12, and
l|ged(m,n)
ged(l,N)=1
(2) the formal Dirichlet series .~ ~% has the formal Euler product
ZT n=% = H 1 —Tup* + (pk—2<p>)p1—2s)—1 . H(l _ Tpp—s)—l
ptN p|N
Proof. Apply the previous lemma with
k=2 if N)=1
K=R(N), t,=T, and d,=1 " () if ged(n, N) =1,
0 if ged(n,N) #1
to obtain the result. O
We record one result (without proof) which will be useful in the next result. For f € My (N, x), we have

(T, f)(z) = nk~ 122)( “*f((az +b)/d).
dC”>0 b=0
ad=n

The following result is similar to Lemma but for T, acting on My (N, x).
Lemma 2.18. Let f be an element of M(N,x), and let

oo (oo}
2minz 2minz
=Y ™™, (Tuf)(z) =) bue
n=0 n=0
be Fourier series expansions. Then

by, = Z X(d)dk_lcmn/dZ-

d>0
d|ged(m,n)
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Proof. Observe that f((az+b)/d) = 30, c,e?m(@=+b)/d Then by the explicit action of 7}, on elements of

n

M (N, x) (which appears just before this lemma), we have

d—1 oo
(T f)(2) = mF 13" S " x(m/d)d ™" Y cpe?minm/d=+b)/d,

d>0b=0 n=0
d|n

Then use the fact that Zz;é e2minb/d ig equal to d if d | n and is 0 otherwise to simplify the above expression
into

Z X(m/d)(m/d)kflcne%m’(nm/dz)z.

n=0 d>0
d|ged(m,n)

Change summation variables to obtain

oo
Z Z X(a)ak—lcdn/ae%rznz’

n=0 a>0a|gcd(m,n)
and with ad = m, it follows that c4,/q = C¢mn/a2, and the result follows. O

Lemma 2.19. Let f(z) = > 02 c,€?™"* be an element of My(N,x), and P a set of prime numbers where
Tpf =tpf forpe P, t, € C. Then

(1) If all prime factors of a positive integer m lie in P, then f is an eigenfunction of Ty,. In this case, let
T f =t f for some t,, € C, from which it follows that ¢, = tyc1.

(2) We have L(s, f) = [T,ep(1 = tp~* + x(p)pF 1 72%) 71 - 320 can™*, where the summation Y, is taken
over the positive integers coprime to every element of P.

Proof. The first claim in (1) is clear. Let n be a positive integer coprime to m. Comparing the n-th Fourier
coefficients of T,,, f and ¢, f, we obtain t,,¢, = ¢(mn) by Lemma By taking n = 1, the second claim in
(1) follows.

By the equality t,,¢, = c(mn), we have the formal equality

Lis.f) = (; tmms) - (Z' cn)

n

where the summation Z; is taken over 1 and the positive integers whose prime factors are all contained
in P, and the summation Z; is taken over the positive integers copimre to all primes in P. Then by
Theorem 1),
tntm = Z X(l)lk_ltmn/l2
1>0

llged(m,n)
ged(I,N)=1

for m,n in the indexing sets for the summations Z; and Z:l, respectively. So formally obtain

"
Z tmm—s — H (1 _ tpp—s + X<p)pk—1—23)—1
m peEP

by a similar argument as in Lemma Furthermore, if ¢, = O(n®) for some «, then the equality above
holds on Re(s) > a+ 1. If f is a cusp form, then we have this growth condition on ¢,, due to Corollary
We do not prove the result when f is not a cusp form. O

The next lemma gives a necessary and sufficient condition for a modular form f € Mg(N,x) to be a
simultaneous eigenfunction of all of the Hecke operators T, in terms of being able to write down an Euler
product for the L-function for f. More importantly, the lemma shows that the eigenvalues of such an
eigenfunction are proportional to the Fourier coefficients of the modular form.



2.3 The Petersson inner product, adjoints of Hecke operators 41

Theorem 2.20. Let f(z) = > 07 c,e*™"% be a nonzero element of My(N,x). Then the following are
equivalent:

(1) f(z) is a common eigenfunction of every Hecke operator T, ;

(2) ¢1 #0 and
Cn

L(s, f) =i [J(1 = top™ +x(p)p* 1 72) 7", 10 = o
peP

Moreover, if f(z) satisfies the above conditions, then T, f = t,f for alln > 1.

Proof. Assume that (1) holds, and let T}, f = ¢, f. By Lemma we have ¢, = t,c; for n > 1. Then if
c1 =0, f(z) = ¢o. Since k > 1, we have in this case that f(z) = 0, which cannot happen by assumption.
Therefore ¢; # 0. Obtain (2) from Lemma [2.19]2), taking P to be the set of all prime numbers P.

Now assume that (2) holds, and let ¢,, = ¢, /¢; for n > 1. Then

> tan= = [ =tpp~* + x(p)p" 7).
n=1 peP

By Lemma|2.16
tntn = Z dkilX(d)tmn/an
d>0
d|ged(m,n)

and multiplying both sides of this equality by ¢; we obtain

tmer = § dkilX(d)Cmn/d%
>0
d|ged(m,n)

But the expression on the right hand side of this equality is equal to the n-th Fourier coefficient of T, f by
Lemma Let by denote the constant term of the Fourier expansion of T,,, f. Then (T;,, f)(2)—tm f = bo—co,
and since T,, f — t,,, f is an element of My (N, x) with & > 1, we have that by = ¢o. Hence T,,f = t,,,f as
desired. O

2.3 The Petersson inner product, adjoints of Hecke operators

We study the space Si(I'1(IV)) by endowing it with an inner product. Define the hyperbolic measure p on
H by du(z) = dady/y? for z = x + iy € H (we will sometimes suppress the (2)). This measure is invariant
under the action of GLJ (R) on H: For a € GL} (R) and z = = + iy € H, let a(z) = o(x,y) + it(x,y).

A few computations using Wirtinger derivatives reveal that ’ggz;g = | - (det a/|j(04,z)|2)2 and

7(z) = ydet o/|j(ev, z)|°. Then for a measurable set A in A,

o) = [ . =

as desired. In particular dp is SLy(Z)-invariant. Since Q U {oo} is countable, its measure is zero, so we may
integrate over the extended upper half plane H* with respect to p.

(o, 1)
d(z,y)

(7(z,9)2  Ja (e, 2)|*  (deta)?y?

dzdy (det a)? |j(av, )| dady dady
=/, 7 —HA

Recall that a fundamental domain for H* under the action of SLy(Z) is given by
D ={ze€H:|Re(z)| <1/2,|z] > 1} U{o0};

that is, any point of A is sent to a point in D by a suitable element of SLy(Z), which is unique for most
points of H (there are a few cases involving points on the boundary of D). Every point s € Q U {oo} may
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be sent to oo by suitable elements of SLy(Z). We show that the integral [. ¢(a(z))dy converges for any
continuous, bounded function ¢: H — C and any a € SLy(Z): Choose vy € SLQ( ) such that y~1D* is a
compact set. By the invariance of the measure under the action of SLy(Z), we have

| etatnau= [ eate)im,

from which it follows that the integral converges.

Let I" be a congruence subgroup, and let {a;} be a set of representatives for the coset space {£I} I'\ SLa(Z);

that is, we have the disjoint union SLo(Z) = | |; {£I} I'a;. If ¢ is I-invariant, then the sum Jp- el (2))dp

is independent of the choice of coset representatives a;. Since du is SLo(Z)-invariant, the sum is equal to

fU oy (D7) ¢(z)dp. Since J; a;j(D*) represents the modular curve X (1) up to identification of boundaries,
QX

/X(F) o(2)dp = /Uj aj(p*)@(Z)dM: zj:/p oo (2))dp

In particular the volume of X (I) is given by Vi = fX(F) dp = [SLa(Z) : {£1} I'|Var, z)-

we define

Observe that for any f,g € Sp(I') for a congruence subgroup I', the function ¢(z) = f(2)g(z)(Im(z))* for
z € H is continuous, and more importantly, I'-invariant. Indeed, for any v € I', we have

p(1(2) = F(1(2))g(4(2)) (Im(7(2)))"*
= (FlebD(2)i(r, 2) gl ()i (. 2)” (n(2))* Ly, )|~
= (fll)) (2)(glk[]) (z) Im(2))*
= ¢(2).
To show that ¢ is bounded on #, we show that ¢ is bounded on |J; o;(D), which is a finite union. Therefore
it suffices to show that for any a € SLy(Z), the function ¢ o « is bounded on D. On any compact subset

of D, continuity of ¢ o o implies boundedness. For the neighborhoods {Im(z) > M} of ico, note that the
Fourier expansions

(
(

(f|r[ Zan fleleDan,  (glkla Zan (glela)gy  for g, = e*™*/" for some h € Z*

are of order O(qp,) as Im(z) — oo. It follows that ¢(a(2)) = (f|x[7])(2)(g]x[7]) () (Im(2))* = O(qn)?(Im(2))*.
Moreover, since |g,| = e 2"™()/? p(a(z)) = 0 as Im(z) — oo, from which it follows ¢ o a is bounded on

the neighborhoods {Im(z) > M} of ico of D, hence on all of D.

Definition 2.21. The Petersson inner product (-,-)r: S;(I") x S;(I") — C for a congruence subgroup
I' is given by

1 _
{(foghr = - F(2)g(=)(Im(2))*dp.
rJxm)
We omit the subscript r in (-, ) when it is clear from context. T

One can check that the Petersson inner product is a Hermitian inner product. If we have the containment
I'" C I of congruence subgroups, then (-,-)p» = (-,-) on Sg(I'): If {B,,} is a set of coset representatives for
{1} I'\SLy(Z) and {v;} is a set of coset representatives for {£I} "\ {£I}I", then {v,5,,} form a set of
coset representatives for {1} I'"\ SLa(Z), from which we obtain

1 — k +I} T {+I} T _ i
T o T = DI ]; [ HEE)TEEN Mm(5(:) e

! a(2) k
Vp /xm) F(2)g(2)(Im(2))"dp

= G S, ST (82 b =
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as expected.

Recall that if T is a linear operator on the inner product space V, then there exists a unique operator T*
on V called the adjoint of T, that satisfies (Tv,w) = (v, T*w) for all v,w € V. If T commutes with T,
we say that T is a normal operator. Give S;(I1(NN)) the Petersson inner product. We show that the Hecke
operators (n) and T,, for n coprime to N are normal operators.

Let I" be a congruence subgroup, and write SL2(Z) = (J; {£/} I'a; for some representatives «; of the coset

space {+I} I'\SLy(Z). If a € GL3(Q), then the map H — H given by z — «(z) induces a bijection
a 'la\H* — X(I'). Tt follows that the union U; a~'a;(D*) up to some boundary identifications is in
bijection with a~'I'a\H*. For continuous, bounded, a~! 'a-invariant functions ¢: H — C define

_ o .
/Otlfa\H* @(Z)dll;/p* ola ey (2))dp

Lemma 2.22. Let I' be a congruence subgroup and let oo € GL (Q).

(1) If p: H — C is continuous, bounded, and I'-invariant, then

L”mwﬂmmwzéwfww.

(2) If a™'T'a C SLa(Z), then Vy-1pq = Vi and [SLa(Z) : a~'Ta) = [SLa(Z) : I'].

3) There exist 31,...,0n € GLI(Q) withn = [ :a 'Tanl]=[I:ala"'NI), such that
2

ral'=| |18 =| |81
J J

Proof. From the discussion above, (1) follows immediately. The first equality in (2) follows from (1), and
the second equality is a consequence of the equation Vi = [SLo(Z) : {£I} I'|Vgy,,(z) and the observation that
—I € a 'Ia if and only if —T € I'.

To obtain (3), we apply (2) with al'a=* N I" in place of I" to obtain
[SLy(Z) : a 'lran T = [SLy(Z) : al'a™t N 1Y,

from which we deduce that [I" : a 'l'anN ] = [[" : al'a”! N T]. Thus there exist coset representatives
Y1y- sy and nyt, .. motin I for the coset spaces (o~ *IanT)\I" and (al'a~'NI)\I respectively. That
is,
r= |_| “'TanT)y; =| |[(@la™ n D)yt
J
In Lemma 2.2} set I'1 = I, = I to obtain

I'al' = |_|Fa’yj and TIa™'I'= |_|Fof1 -1
J J

The second equation implies that I'al’ = | F njal’. For each j, the intersection I'ay; N njal’ is nonempty,
since otherwise we would have I'ay; C ||, £ n;al’. Multiplying this equality from the right by I' gives
I'al' C |_| jmod’, a contradiction. So for each j, choose some 3; € I'ay; N n;ol’, from which we obtain

rar =], 1%, = ), ;T 0

The following proposition will be used to compute adjoints of the Hecke operators.

Proposition 2.23. Let I' be a congruence subgroup and let o € GL (Q).
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(1) If a™'T'a € SLy(Z), then for all f € Sp(I") and g € Sk(a ' Ta)
(flela]. 9)a-1ra = (f, glu[det(@)a™"])r.

(2) Forall f,g € Sk(I'),
(fle[lal),g) = (f,glx[[" det(a)a~" 7).

We have |p[[al']* = |[g[['det(a)a™ . If a 'T'a =T, then |g[a]* = |[det(a)a™1].

Proof. To prove (1), note that o/ acts on elements of H* in the same way as a~!, and apply Lemma 1)
to obtain

/ (f1kla]) (:)9(2) (Tm (=) dps = / (det 0)*/2j(a, 2) ™ f(a(2))g(2) (Im(2))*du
a1 o\ H*

a~ o\ H*

:/ F(2)(det @) /j(a, o (2)) " Fg(a/ (2)) (Tm(a () dp
X(I)

Recall the identities j(ac/,z) = j(a, /(2))j(a, 2) and Im(a/(z)) = (deto’) Im(z)/|j(/,t)|?, and observe
that det o’ = det @. Continuing with the computation gives

:/ f(2)(det a)*/2j(a’, z)~Fg(a/ (2)) (Im(2)) *dp
X(I)

:/ F(2)(glkle) (2)(Im(2)) dp.
X(I)

Since V-1, = Vi by Lemma [2.22(2), the result follows.

To show part (2), from Lemma [2.22(3), there exist {3;} for which I'al" = | |; 3;I", from which we deduce
that I'a’'I" = | |; I'(det ﬁ])ﬁj_l Then apply part (1) of this lemma with each @Fﬁ;l N I" in place of I' in
the following:

(fellaT]g)r = (deta)*> ™1 3 F1k[81], ) rag;
J
= (det o)*/271 Y (f, glil(det 57)8; ) g, rp-1rr
J
= (f,9ls[la' T r. O
We obtain the adjoints of the Hecke operators without much trouble using the above proposition.

Theorem 2.24. For p{ N, the Hecke operators (p),Tp: Sk(I1(N)) = Sp(I1(N)) have adjoints

)=~ and T; = (p)~'T,.

Furthermore, one can show that T = (n)~'T,, for n coprime to N. It follows that the Hecke operators
(n), T, for n coprime to N are normal operators.

Proof. Let f,g € Sk(I'1(N)). Since I'1(N) is normal in IH(N), we have by Proposition 1) that (p)* is
given by |i[a]* = |x[a~'], where o is any element of I(N) such that o = (§ ) (mod N). But the action of
(p)~1 is exactly |p[a™1].

From Proposition 2), we have T, given by
DL (N) (6 ) T (N)]* = (e [T (V) (B 9) I (V).
1

Choose m,n with mp —nN =1, and observe that (29) = (& =) (6 9) (X 1), with (& ,}fp)_l € I'i(N) and
(% ») € It(N). Thus with It (N) normal in IH(N), we have

L(N) B (N) = (V) (6 9) Tu(N) (X n)-
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If IV(N) (5 9) 11 (N) = LI; 1 (V) B, then I(N)(B O (N) = L I (N)B; (% 7). Since m = p~! (mod N),
we have T7¥ = (p) T, as desired. O

Corollary 2.25. By the spectral theorem, the space Sk(I'1(N)) has an orthogonal basis of simultaneous
eigenvectors, called eigenfunctions (or eigenforms), of the Hecke operators {(n), T, : ged(n, N) = 1}.

Recall that wy = ( J(\), Bl). The next result will have several consequences in Section where we discuss
simultaneous eigenfunctions of the Hecke operators.

Theorem 2.26. The following diagram is commutative:

[k[wn] [k[wn]

Mu(N,X) — s Myu(N,%).

Proof. It suffices to show the result for (p) and 7T}, in place of T),.

Let f € My(N,X). Then (p)*f = (p)~*f = x(p)f, and for any v € I'H(N) with v = (§ ) (mod N), we have
wywn = (§ pfl) (mod N), where p~! is the inverse of p modulo N. Therefore f|i[wy'ywn] = x(p)f as
desired.
Let I1(N)(§ )1 (N) = L, I1(N)a,. A computation reveals that wy' I (N)wy = I7(N), from which we
obtain

LN (D TIN) = o THN) (3 9) I (Nwn = | I1(N) (wi awwn).-

Thus
(Flelon DRIV (6 ) T VD klon] = p*2 71> 7 flrlwy' awwn]
= flelT1(N) (5 9) I (N)].
The result follows from the fact that T is given by [ [I1(N) (5 9) 1 (N)]* = [x[LL(N) (5 9) 1 (N)]. O

We include the following result without proof.

Theorem 2.27. Let M be a multiple of N, and n a positive integer coprime to M. Then the following

diagram is commutative:
Ty (resp. T)

Mk(Na X)

Mk(N7 X)

Ty (resp. T})

Mk(M7 X) Mk(M’ X)

Here the vertical arrows indicate the natural embeddings. The Hecke operators are taken at the appropriate
levels.

See [Miy05|, Theorem 4.5.10] for details.
Similarly to R(IN), we collect the adjoints of the Hecke operators and form the following algebra:
Definition 2.28. Denote by R*(N) the polynomial ring

R*(N) =ZI[T;,(q)" : p,q €P,q{ N].
The ring R*(N) is the ring of all adjoints of Hecke operators in the Hecke algebra R(N). 1
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We would like to eliminate the requirement that ged(n, N) = 1 and find a space of cusp forms for which all
of the Hecke operators are simultaneously diagonalizable.
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3 Oldforms, newforms, and strong multiplicity one

We consider an elementary way of moving between spaces of modular forms at different levels, specifically
to take forms of lower levels M dividing N to forms of level N. Restricting our view to cusp forms, we
define the so-called spaces of oldforms and newforms, which distinguish between the cusp forms that may be
obtained by lifting cusp forms of lower levels up to level N, and those which are not obtained in this way.
We show that the space of newforms has a basis consisting of normalized simultaneous eigenfunctions of all
of the Hecke operators, and conclude with the strong multiplicity one property. The strong multiplicity one
property shows that a normalized cusp form that is a common eigenfunction of all of the Hecke operators is
completely determined by almost all of its eigenvalues.

3.1 Oldforms and newforms for y-eigenspaces

For the remainder of this work, we restrict our view to various x-eigenspaces of My, (It (N)) and Si(I1(V)).
Specifically, we fix N and consider y-eigenspaces at different levels M, where M divides N.

Definition 3.1. In what follows, denote by o, the matrix

(07)

for a positive integer ¢. The action of matrices of this form on modular forms, which is essentially to scale
the argument by ¢, appears many times in what follows. ]

Lemma 3.2. For f € My(N,x), the function f oy is an element of My(¢N, x) with

(f o) (2) = f(lz) = €7 (flifou]) (2).

If f is a cusp form, then so is f o ay.

Proof. Indeed, for any v = (& 4) € To(¢N),

(fIrlaDlely) = (Flrloeyvey Dirloed = (FIxl(& D klee] = x(d) flrloe] = x(7) Il

which implies that f|g[oe] € Mg (€N, x). The last statement is clear. O

In this setting, the map ay provides a way to move between y-eigenspaces at different levels.

We saw at the end of the previous section that the Hecke operators T;,, for n coprime to N, are simultaneously
diagonalizable on Sy (I (INV)) and hence also on S(N, x). Unfortunately, Si(N, x) does not necessarily have
a basis of eigenfunctions of all Hecke operators T,,. However, Si(N, x) does have such a basis when x is a
primitive character of conductor N. We might expect that if we exclude cusp forms of lower levels in Sk (N, x)
(that is, the cusp forms appearing as the image of some suitable ay in the manner described above), we may
be able to simultaneously diagonalize all of the Hecke operators T,,. This is indeed the case, as we will see.

Lemma 3.3. The Hecke operators T, (n) commute with the action of cy whenever n is coprime to (N ; that
is, the diagram
Ty (resp. (n))

Mk(N7X) M’C(vi)
[k [ove] [ [ove]
Mk(fN,X) Mk(gN,X)

Ty (resp. (n))

commutes.
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Proof. Let f be an element of My(N,x). Since ged(n,{N) = 1, we have ((n)f)|x[ae] = x(n)flx[ae] =
(n) (fklexe])-

Therefore it suffices to show that T}, commutes with the action of oy for primes p not dividing ¢N. From
Proposition [2.9]

Ty (flulee)) = p*/?7! if\k[ae@ N+ 0" () Flilewe (5 9)]

j—O
/21 Zf\ Nl + ™ x(0) 1k (5 9) ]
= (Tpf)|k[a£]a

where in the last equality we used the fact that ¢ and p are coprime to see that

{07) (% 5) (B9) 0= <pomp—nv=1}

form a set of coset representatives for I (N)\I(N)(§ )11 (IN). The result follows. O

We state the next lemma without proof.

Lemma 3.4. Let f be an element of My(N,x). If there exists an element o = (‘; g) € Ms(Z) such that
¢=0(mod N), ged(a, N) =1, and det a > 0 that satisfies the following conditions, then f = 0.

(1) deta > 1, ged(det o, N) =1, and ged(a, b, c,d) =1, and
(2) flela] € Mi(N,Xx).

This is a technical result that will be used in a few results to come. See [Miy05, Lemma 4.6.3] for details.

The next result provides a way to determine if a cusp form may be obtained as a cusp form at a lower level.

Theorem 3.5. Let ¢ be a positive integer, and let f be a holomorphic function on H such that f(z+1) = f(z)
and foay € My(N,x). Denote by m,, the conductor of x. Then

(1) if bmy | N, then f € My(N/C,x), and
(2) if bmy t N, then f =0.
Here my, is the conductor of x. If f oy is a cusp form, then so is f.

Proof. We may assume that ¢ is a prime number. We first show that f € My (N, x). Let

I = { (cffl\f g) € Ip(N) :b=0 (mod 6)},

and let v = ( ) be an element of I". Since o, Yvay = (C;N Z) € IH(N), we have

Fflelyad = fllacay yvae) = (flelae])lrlag M vae] = x(d) flilal,
from which it follows that f|x[y] = x(d)f. Let I'” be the group generated by I'"” and the matrix ( ) Since
[[":T"] > £ and
4 ¢| N,

[To(N): I'] = {£+1 (IN
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we have that I = Iy(N) or I(N) is generated by (§1) and I'". Since f(z + 1) = f(z), we have that
f € Mi(N,x).

Suppose that ¢ is coprime to N. By taking o = ay in Lemma [3.4] it follows that f = 0. So assume that
(| N. For any element v, = (% 3) € Io(N), we have

Flel(ent e %1 = flrleeriog '] = x(d) f,

§ 1) for any integers n,m, we
(mod ¢), from which we may
0 (mod ¢). Then

have f|x[v] = f. Now choose n to be any integer such that nN/¢ 4+ 1 #
choose m to be an integer such that n(1 4+ mN/¢{) + m =n+ m(nN/{+ 1)

a; oy = (1 + %N/E (1 ZT]@%/?; 1]/6) € IH(N),

and in particular we have f|k[(N1/4 (1))] f. Therefore, with v = ({ ) (N/Z (1))(
0

and so fl[y] = x(1 +nN/O)f.

Therefore, if f # 0, then x(1+nN/¢) =1 for any integer n satisfying ged(nN/¢+1,¢) = 1. This implies that
X is deﬁned modulo N/¢, and that N is divisible by ¢m,. This proves (2) in the statement. Now assume
that ¢m,, | N. Since I'H(IN/{) is generated by (N/tz 1) and I'o(N), we have that f € My(N/{, x) as needed.
Lastly, it is clear that if f o ay is a cusp form, then so is f. O

Lemma 3.6. Let f € My (N, x) have Fourier series expansion f(z) =Y o, ane*™"*. For a positive integer

L, let g be given by
g(z) — Z aTLeQﬂinz.

n>0
ged(n,L)=1

M=N]]r]]»*

p|L  p|lL
p|N  ptN

Then g € My (M, x), with

where the products are to be taken over primes p. If f is a cusp form, then so is g.

Proof. Tt suffices to show the result when L is a prime number p. Let N' = N if p | N and N’ = pN
otherwise. Since p | N', we have by Proposition that

(T f)( Z a, Z 2min(z+m)/p _ Z an 27rznz

n70

where T, is acting at level N’. Hence (T,f)(pz) = D> oo @npe®™™P*, which belongs to My (N'p,x) by
Lemma [3.2] Then the function g, given by

9(2) = f(z) = (Tp.f)(p2),
is an element of My (N'p, x). The last assertion is clear. O

Lemma 3.7. Let x be a Dirichlet character modulo N, £ a positive integer, and p a prime number that does
not divide £. Let M = ¢N. Then the following diagrams commute.

N (§ 9) ()
Mi(pN, x) Gy)

Mk(N7 X)

I (pM) (1)0 I (M)
My, (pM, x) G5)

Mk(Ma X)
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(In the above diagram, the vertical arrows indicate the natural embeddings.)

rieN) (§ 5) 1)

(32) Qg Qy
L (pM) (§ ) 11 (M)
M. (pM, x) Mi(M, x)

Similar results hold for cusp forms.

Proof. By assumption, p | N if and only if p | M. Therefore, by Lemma the commutativity of diagram
[Blis clear.

Now let f be an element of M (pN, x), and let g = f|g[ae]. Let

JodP- 1 ifp| M
B P otherwise,

and v, = (§¢) for 0 < v < p. If d = p, choose 7, as in Lemma Then we have

d

Iy (pM) (6 p) (M) = |_| Iy (pM) (6 )1
v=0

and

d
PPl [D (M) (§ ) T (M) =D glel (8 9) %]
v=0

d
= Z f|k[0‘€((1) 2)%]

v=0
d
=" FIkl(§ ) (cemay M.
v=0

Observe that Oég"}/vazl = ((1) ‘51“) for 0 < v < p, and that for p{ N, we have

-1 _ {((alo_l 7(;)1) (mOd p)7
(mod N).

It follows from Lemma [2.10] that

d
NpN) (6 ) Ti(N) = || Tu(eN) (6 5) (ceywoy ).
v=0
Thus
9le[T1(pM) (6 ) 11 (N)] = (fli[T1(pN) (6 ) T2 (N)]) | [ae] O

Lemma 3.8. Let ¢ be a positive square-free integer, and let f € My (N, x) have Fourier series expansion
f(z) =300 yane*™ ™= If a, =0 for all n coprime to £, then

flz)= ng(pz) where g, € My(N? x),
plt

and p runs over all prime factors of £. Furthermore, if ¢ | N, then we may choose g, from My(NC, x). If f
is a cusp form, then each g, can be chosen to be cusp forms as well.
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Proof. The proof is by induction on the number of prime factors of ¢. Suppose first that £ is prime. Then
g given by g(z) = f(z/{) satisfies the conditions of Theorem [3.5] so that g € My(N/¢,x) or f =g =0,
depending on whether ¢m, divides N or not. Thus g € My(N¥, x) with f(z) = g(¢z). Now let £ be a
composite number, and assume the result holds for any proper divisor of £. Let p be a prime factor of ¢ and

let ¢/ = ¢/p. Let h be given by
h(z) = Z a,e2minz,

n>0
ged(n,p)=1

Then h € M (Np? x) by Lemma Let b, for n > 0 be the Fourier coefficients of f — h; that is,
f(z) = h(z) =307 bpe*™™=. Then if ged(n, p) = 1, b, = 0. Define g, by

9p(2) = f(2/p) — h(z/p),
and observe that g, € My(Np,x) by the inductive hypothesis. Furthermore, note that h satisfies the
assumption of the lemma with Np? and ¢ in place of N and ¢, respectively. Therefore we may find gq €
M (Np? ()2, x) = Mp(NF2,x) for each prime factor ¢ of ¢’ satisfying h(z) = qu 9q(gz). Combining this
with the observation that f(z) = g,(pz) + h(z) yields the first half of the lemma. From Lemma [3.6]it is clear
that we may take g, from My (N¢, x) if £ | N. Lastly, it is clear that the g, may be chosen to be cusp forms
if f is a cusp form. O

The following theorem generalizes Theorem

Theorem 3.9. Let £ be a positive integer, and let f € My(N,x) have Fourier series expansion f(z) =
> ane*™ "%, Let m, be the conductor of x, and assume that a, =0 for all n coprime to (.

(1) If ged(¢,N/my) =1, then f =0.
(2) If ged(¢, N/m,) # 1, then there exist f, € My(N/p,x) for all prime factors p of ged(¢, N/m,) such

that
f = > fa).
plged(¢,N/my)

If f is a cusp form, then we may choose the f, to be cusp forms as well.

Proof. We may assume that ¢ is square-free, and we prove the result by induction on the number of factors
of £. When / is a prime number, the result is obtained from Theorem [3.5| - 5| for f(z/¢). Now assume that ¢
is composite and that the lemma holds for any proper divisor of £. Let p be a prime factor of ¢, and let

0 =1/p.
Let h and g be given by
h(z) = Z a,€®™™* and  g(2) = f(z) — h(z) = Z a,, 2%

n>0 n>0
ged(n, 0 )#£1 ged(n,l')=1

Observe that h and g are elements of My (N (¢')?,x) by Theorem Letd=p—1ifp? | N, or let d = p if
p? 1 N. Then choose elements v, € I'1(N(¢')?/p) for 0 < v < d (via Lemma [2.10)) so that

LU (N()2) (3 ) T (N (E)2/p) = |_|r1 2)(19),.
Then
d
I[N ())& )TN () /p)] = P27 > " X () g1kl (6 9) vl

v=0

d

=p ngﬂk[%]
v=0

= (d+ l)pilgzr
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Hence
9(2) = gp(p2) = p(d+ 1) (glk [T (N ()?)(§ 5) T (N ()2 /p)]) (p2).
Let
fo(2) = p(d+ 1) (fIR [ (N) (6 ) T (N/P)]) (2)-
Then f, € My(N/p,Xx), and by Lemma 1),
(3.3) fo(2) = pld+ D)7 (FIR(N () (6 ) T (N ()2 /p)]) ().

We show that f(z) — f,(pz) satisfies the assumption of the theorem for ¢'. It is clear that f(z) — f,(pz)
defines an element of My (N, x). We have

(3.4) f(2) = fp(p2) = f(2) — fp(pz) — 9(2) + gp(p2)
=(f(2) —g(2)) —p(d+ 1)~ ((f DN (6 ) TN () /p)]) (p2)
=h(z) = p(d+ 1) (hlp[ L (N()?) (5 9) T (N ( "2 /p)]) (p )

Since the n-th Fourier coefficient of h vanishes if n is coprime to £/, we may write

(z) = Z hy(gz) with h, € My(N()*m, x)

ale’
by Lemma Moreover, for any prime factor ¢ of ¢,
hle[TL (N (€)?) (6 ) i (N (€)? /p)] = hlk LN (€)2q) (6 ) I (N (€)a/p)]

by Lemma [3.7(1). Combined with Lemma [3.7(2), we have that

(n P G 6 = (X Phablad

qlt’

LN (5O) r1<N<e'>3q/p>]) (2)

k

=D (hals[TA(N () (§ ) (N () /p)]) (42)-

ql¢’

In particular, the n-th Fourier coefficient of (h|i[I1 (N (€)2)(§ 5) 1 (N (¢')%/p)]) (z) vanishes whenever ged(n, ') =
1. As a result, the n-th Fourier coefficient of f(z) — f,(pz) vanishes by (3.4). Therefore, by the inductive
hypothesis, we have

f(2) = folp2) = qu (qz), for fy € Mx(N/g,x),

where ¢ runs over all prime factors of ¢. This proves part (2) of the theorem. If f is a cusp form, then it is
clear that each of the modular forms appearing in the proof may be chosen to be cusp forms also. O

In what follows, we only consider cusp forms.

Definition 3.10. Denote by S}(N, x) the subspace of oldforms at level N of S,(N, x), which is generated
by the set

UU{foar: feS(M, )}
M ¢

Here M runs over all positive integers such that m,, | M, M | N, and M # N; here ¢ runs over all positive
divisors of N/M, including 1 and N/M. (As usual, m, denotes the conductor of x.)

In other words, S{(N, x) is the subspace of S, (NN, x) generated by cusp forms coming from lower levels.

Denote by SP(N, x) the subspace of newforms at level N, given by the orthogonal complement of S} (N, x)
in S; (N, x) with respect to the Petersson inner product. T
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new
)

In other sources, the ' and © denoting the spaces of oldforms and newforms is replaced by °'9 and
respectively.

By the above definition, we immediately obtain the following lemma:
Lemma 3.11. (1) If x is a primitive Dirichlet character of conductor N, then Sp(N,x) = SY(N, x).
(2) Let x be a character of conductor my. If my | M, M | N, and M # N, then Sp(M,x) C SL(N,x).

(3) The space Sk(N, x) is generated by the set
UU{foag (fESYN,X)}-
M ¢

Here M runs over all positive integers such that m, | M and M | N; here £ runs over all positive
divisors of N/M, including 1 and N/M.

Lemma 3.12. The subspaces S,i (N, x) and S,g(N, X) are stable under the action of the Hecke operators T,
for n coprime to N.

Proof. Let f € S}(N,x). By definition, we may write f as

f(2) =) folboz) for fy € Sp(My,x), with £,M, | N, M, # N.

Let g, be given by g,(z) = f,(¢,2). Since ged(n, ¢, N) = 1, we have

(Tuh)(=) = S (Tug)(2) = S (T fo) (62)

v v

by Theorem and Lemma Hence T,,f € S{(N,x); that is, S} (N, x) is stable under 7),. Since the
adjoint of T,, on Sk(N, x) is (n)T;, (see Theorem [2.24)), it follows that SY(N, x) is also stable under 7,,. [

It follows from the above lemma that the subspaces SY(N,x) and Si(N,x) of Sk(N,x) have a basis of
simultaneous eigenfunctions of all of the Hecke operators T;,, for n coprime to V.

3.2 Primitive forms

In this section we briefly focus on simultaneous eigenfunctions of the Hecke operators in the space of new-
forms.

Lemma 3.13. Let f € S,E(N, X) have series expansion Zzozl ane®™™* . If f is a common eigenfunction of

the Hecke operators Ty, for all n coprime to some integer L, then ay # 0.

Proof. Assume by way of contradiction that a; = 0. By Lemma 1), we have that a, = 0 for all n
coprime to L. Hence f € S{(N,x) by Theorem [3.9, which is a contradiction. O

Theorem 3.14. Let f(z) € SY(N,x) and g(z) € Sk(N,x). If f(2) and g(z) are common eigenfunctions of
T, with the same eigenvalue for each n coprime to some integer L, then g(z) is a constant multiple of f(z).

Proof. Let f have Fourier expansion > -, a,e?™"*. Since a1 # 0 by Lemma normalize f so that
a; = 1. Furthermore assume that N | L. Decompose g into g° + g', the sum of its newform and oldform
components. By Lemma both g% and g' are common eigenfunctions of the operators T, with the same
eigenvalue a,, for each n coprime to L.

Assume that ¢° # 0, and write ¢°(z) = > 7, b,e*™"*. By Lemma by # 0. We show that ¢° = b, f.
Let >"7 , ¢,e*™"% be the Fourier series expansion for ¢ — by f. Since bia, = b, for all n coprime to L by
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Lemma [2.19(1), we have that ¢, = 0 for all n coprime to L. Then Theorem implies that ¢ — by f €
S} (N, x), and that ¢° = by f.

Next we show that g'(z) = 0. First suppose that N = m,, the conductor of x. Then S} (N, x) = 0, so that
gt =0. If N #m,.

If g' # 0, then there exists a proper divisor M of N satisfying m, | M, and a nonzero element h of Sp (M, x)
such that T,,h = a,h for all n coprime to L. Then by definition we may write

9'(2) =Y ho(luz), hy € SY(My, ), LM, | N, M, # N.

Since M, divides N, Lemma implies that S,g(Mv, X) has a basis consisting of eigenfunctions of the
operators T), for all n coprime to L. Therefore we may assume that all h, are common eigenfunctions of T,
for all n coprime to L. Since eigenfunctions with distinct eigenvalues are linearly independent, the summation
of all h,(£,z) whose eigenvalues for T,, are different from a,, must vanish. So by removing those functions
from the sum, we may assume that the h, appearing in the sum g'(z) = >, hy(€y2) satisfy T,hy = anhy,
for all n coprime to L. Therefore we may take any h, as h and any M, as M.

Let h(z) = Y07, ¢,,e*™™* be the Fourier series of the element h from before. Since T,h = a,h for all n
coprime to L, we have that ¢} # 0 by Lemma Let Y0, d,e?™™* be the Fourier series expansion for
h —ci f. By Lemma ), d, = 0 if n is coprime to L, and so by Theorem h—dif € SN, x).

Hence f(z) = —c|(h(z) — ¢\ f(2)) + c|h(z), so that f is an element of S}(N,y), which contradicts the
assumption that f was an element of S?(N, x). Therefore g' must be zero, so that g = g° = by f. O

Definition 3.15. An element f € SP(N, x) is a primitive form of conductor N if the following conditions
are satisfied:

(1) f is a common eigenfunction of all of the Hecke operators T;, for n coprime to N, and

o0

o 1 pe¥™ "% with a; = 1.

(2) f is normalized; that is, f has Fourier series expansion f(z) =
We also call SP(N, x) the space of primitive forms of level N with character x. T

In other sources, primitive forms are called newforms, which may be confusing.

Theorem 3.16. Primitive forms are common eigenfunctions of all operators in R(N)UR*(N), and SY(N, x)
has a basis consisting of primitive forms.

Proof. Let f be a primitive form in S)(N,x), and let T,,f = a,f for all n coprime to N. Let T and
T* be elements of R(N) and R*(N), respectively. Since T' commutes with T},, T* commutes with 7', and
Tof = x(n)T f, we have that T* commutes with T,,. Therefore T f and T* f are also common eigenfunctions
of the operators T,,, with the same eigenvalue a,,.

Then Theorem [3:14] implies that both T'f and T* f are constant multiples of f, as desired.

Since SY(N, x) and Si(N,x) have bases consisting of common eigenfunctions of the operators T), for n
coprime to N, what we just proved along with Lemma imply that S,g(N ,X) has a basis of primitive
forms. O

Let f be a primitive form of S (N, x) with Fourier series expansion f(z) = Y -, a,,e?™™*. Then

(3.5) To(flklwn]) = anflrlon]  and  Tr(flklwn]) = anflrlwn]

for all positive integers n.

We omit the proofs of the following three results.
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I

Theorem 3.17. (1) By the action of wy, we obtain the isomorphisms Sp (N, x) = SP(N,X) and SE(N, x)
SH(N,X), and

(2) if f(2) is a primitive form of SP(N,x), then f,(z) is a primitive form of SY(N,X) and
flrlwon] = cfp(2)

for some ¢ € C.

See [Miy05], Theorem 4.6.15] for details.
Let 74 and ~y; be two elements of SLy(Z) such that

Then let ny = v, (A(/)‘Z (1)) and nq Vq (N/N 0)

Theorem 3.18. We have

(1) By the action of ng, we have the isomorphisms
SP(N,X) = SN, X;Xa),  Sk(N,x) = Si(N, Xy Xa)-
(2) By the action of ny, we have the isomorphisms
SN, X) = SEN Xgxa)s Sk(V,x) = S (V. XgXq)-
(3) For f € Sp(N,x), we have fl5[n2] = Xq(=DXG(No).f, flilny"] = Xo(=DXg(N/Ny) f, and flilngny] =
X;(Nq)ﬂk[WN}-
(4) Let f € SY(N,x) be a primitive form with f(z) =Y >, a,e*™"*, and write

(flrlngd)(z) = ch e (with by = 1).

n=1

Let gq(z) = D07 | bpe®™inz,
Then gq is a primitive form of SY(N, XgXq), with

p = dXaP)ay  fpF#a,
D 7 J— . _
Xg(P)a, ifp=q
for any prime p.
See [Miy05, Theorem 4.6.16] for details.

Theorem 3.19. Let f(z) =Y 7 | a,e*™"% be a primitive form of SY(N, x), and m the conductor of x. For
a prime factor q of N, denote by N, and my the g-components of N and m, respectively; that is, Ng and mq
are the largest powers of p dividing N and m, respectively.

(1) If Ny = my, then |ag| = ¢*—1/2.
(2) If Ny = q and my =1, then aﬁ - X;(q)qk_z.

therwise, that 1s, if q an mg, then a, = 0.
3) Oth h f q2 Ny and Ny 0 th =0

See [Miy05, Theorem 4.6.17] for details.



56 3.3 Strong multiplicity one

3.3 Strong multiplicity one

We finally prove the strong multiplicity one property for classical modular forms. Let g € Sp(M, ) be a
cusp form at level M that is normalized; that is, g has first Fourier coefficient equal to 1, and is a common
eigenfunction of all of the Hecke operators. If there exists a primitive form f € SY(NV, x) at level N (which
need not be the same as M) whose Fourier coefficients, that is to say its eigenvalues, agree with the Fourier
coeflicients of g at all indices n coprime to some integer L, we show that g is equal to the primitive form f
at level N.

Theorem 3.20 (Strong multiplicity one). Let f be a primitive form in S (N, x) and let g be an element of
Sk(M,\), with Fourier series expansions f(z) = Y oo, ane®™ ™% and g(z) = >0 | bpe*™ ™%, Ifby =1, g is
a common eigenfunction of R(M)UR*(M), and a,, = by, for all n coprime to some integer L, then N = M
and f =g.

Proof. Without loss of generality we may take L to be a common multiple of N and M. If p is a prime
number coprime to L, we have from T)» = T,,T}, — pF~1{p) that

X(p)pk_1 = af) — ay
2
— 02— by
=Ap)p* T,

so that x(p) = A(p). It follows that x(n) = A(n) for all n coprime to L.
We show that M | N. By Theorem L(s, f) and L(s, g) have Euler product expansions, so that

An (s, f) _ <\/N>é H 1 —byp~* + A(p)pF—17%
A (s, g) VM 1—a,p—* + x(p)p*—1-25

(3.6)
p|L

for Re(s) > k/2 + 1. Since the ratio in the right-hand side is a meromorphic function on the whole s-plane,
(3.6 holds for all s on the s-plane except at the poles.

On the other hand, we have
An(s, f) _ An(k—s, flrlwn])
Am(s,9)  Am(k = s, glilwnm])

by Corollary Furthermore, T, g = b, g, and since g is a common eigenfunction of T.r by assumption, we
have that Trg = b,g and

T (glelwar]) = bn(glelwns])

by Theorem Then by Theorem it follows that L(s, g|xwas]) also has an Euler product expansion.
Combined with Theorem [3.17(2), we have

Anls. /) _ An(h = s, flslon]) :c(m)k_sﬂ 1—byp* ¥ + A(p)p>~+ !

(8.7) Aui(s,9)  Ani(k— s, glklwn]) VM 1—app=* + X(p)p> !

p|L

for some constant ¢. By combining (3.6) and (3.7) together, we obtain

(N)S 1= bpp™* + AP 17 c( W)k e bpp® ™" + A(p)p* !
M) 211 —app=+x(p)ph 172 \VM 1 —aps=F + x(p)p2s—h-1"

pl p|L

Denote by M, and N, the p-components of M and IV respectively; that is, M, and IV, are the largest powers
of p dividing M and N, respectively. Then for any prime factor p of L,

Np s 1— bpp—s + )\<p)pk—1—2.s 1— Eps—k _|_X(p)p2s—k—1

v —c

M, ) 1—app= +x(p)pF=172 1 —aups=F + x(p)p?>—F-1

(3.8)
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holds for some constant ¢, by Lemma Let x = p~*, and let u and v be the degrees of

1—ayp 4+ x(p)p" 172 =1—apz + x(p)p" '2? and
1— bpp—s + )\(p)pk—l—Qs —1— bp.lf + /\(p)pk—lan
as polynomials of x, respectively. Thus 0 < u,v < 2. Furthermore, write M, /N, = p°, so that (3.8]) becomes

(3.9) e lobpr A A e 1= byp e+ X(p)p e
. 1 —apx + x(p)pF~—ta? P1—ap ka1 +x(p)pF-la—2

We investigate each combination of values that u,v may take, and show that if a particular combination of
u, v implies that e > 0, that case could not occur. Thus in the remaining cases, e < 0 so that M, | N,,.

(1) If u = v, take z — oo in (by taking Re(s) — o0) to deduce that e = 0.
(2) Ifu =1 and v = 0, then a, # 0 so that may be rewritten as
(1 —app Fa™) = ¢, (1 — apx).
Then e = 1, and multiplying the above equality by a? we may rearrange to obtain

2 _
apT — |ay|"p k

—apCp = )

apr — 1

from which it follows that |ap\2 = p*. This is in contradiction with Theorem so this case could

not occur.

(3) If u = 0 and v = 1, then (3.9) becomes x¢(1 — b,z) = c,(1 — b,p~*x~1), from which it follows that
e=—1.

(4) If u =2 and v = 0, rewrite (3.9) as
(3.10) (1 —app e +x(p)p " e 7?) = (1 — apx + x(p)p*ta?).

Then e = 2, so that we have

— — 2 _
k1. _ X" '2® — x(p)app~ e + [x(p)|"p

x(p)pF—1a? —apr +1

1

It follows that x(p)p*~'c, = 1 and |x(p)|* = p?; the latter is impossible.
(5) If w =0 and v = 2, deduce that e = —2.
(6) If w =2 and v =1, rewrite (3.9) as

pel= Gp Fa T+ X()p e 1 - apz o+ x(p)pt e
1—bypFa—! P 1—byx ’
so that e = 1, and rewrite this equation as
2?2 —ap e+ X 2 = X(p)app e 4 X(p)p
x—bppk ? X(p)p~F (1 - bya)
The roots of the polynomials
2 —@p Fe+X(p)p "' and  2® —x(p)ayp e+ x(p)p

agree. However, since the product of the roots of these polynomials are equal to the constant terms of
each polynomial, we must have X (p)p~*~! = x(p)p~**!, a contradiction.

(7) If w =1 and v = 2, deduce that e = —1 by taking limits.

In any case, it follows for any p that M, | N, so that M | N, and that x is induced by A. Then Theorem
implies f(z) = g(z), so that N = M. O
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Symbols and definitions

L-function,
T, B7

X(I),

Y(I),

SL2 (Z)7 ﬁ

(n),

Qy, @
X-eigenspace, [24]

gk(F)a

2=

congruence subgroup, [9]

cusp, [17]

Dirichlet character,
double coset,

elliptic point,

factor of automorphy,
fundamental domain,

Hecke operator,
hyperbolic measure,

modular form of weight &, [10]

Petersson inner product,
primitive character,
primitive form, [54]

weakly modular of weight k&,
weight-k v operator,
weight-k Iy als operator,
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